Designing a Path-oriented Indexing Structure for a Graph Structured Data

Stanislav Bartoň

Masaryk university, Brno

June 1, 2005

Stanislav Bartoň (Masaryk university, Brno)Designing a Path-oriented Indexing Structur

Introduction RD

RDF Graph

An example of an RDF Graph

э

- (E

- Firstly introduced in the context of Semantic Web
- Designed to study complex relationships between entities defined as Complex Associations
- Can be generalized into terms of graphs and a problem of searching paths in them

ρ -path operator

< ロ > < 同 > < 回 > < 回 >

ρ -path operator

 ρ -path operator definition in graph theory terms:

$$\rho\text{-path}(\mathbf{x}, \mathbf{y}) = \{ p = (v_1 e_1 v_2 e_2 \dots e_n v_{n+1}) | v_1 = x \land v_{n+1} = y \land p \text{ is acyclic} \}$$

ρ -connection operator

э

- ₹ 🖬 🕨

ρ -connection operator

 ρ -connection operator definition in graph theory terms:

$$\rho\text{-connection}(\mathbf{x}, \mathbf{y}) = \{(p_1, p_2) | p_1 = (v_1 e_1 v_2 e_2 \dots e_n v_{n+1}), p_2 = w_1 h_1 w_2 h_2 \dots h_n w_{m+1} \rangle \land v_1 = x \land w_1 = y \land v_{n+1} = w_{m+1} \land p_1, p_2 \text{ are acyclic} \}$$

Designing the indexing structure

Adjacency matrix

- Great graph description, simple transitive closure computation
- Can be easily modified to store paths themselves rather then just amounts of them
- The use of matrix algebra is limited to relatively small graphs due to space and time complexity
- \bullet With graph transformations towards graph simplification \Rightarrow transformed graph must have similar properties as the original graph had
 - Graph segmentation (vertex clustering, graph to forest of trees)
 - The transitive closure of segment graph models all paths from the original graph

Designing the indexing structure

Path type matrix

- Instead of storing the amounts of paths, keeps the paths themselves
- $\bullet\ +$ and $\ast\ replaced$ by path concatenation and set union
- enables cycle detection during computation
- Vertex clustering
 - two pass algorithm that divides the graph into several subgraphs of predefined size
 - the vertices that are *close* to each other are put to same subgraphs
 - very general, non-restrictive technique that can be applied to arbitrary directed graph

Graph segmentation

• Segment S in a graph $G : S = (V_S, E_S) : V_S \subseteq V \land E_S = \{e \in E \mid RIGHT_VERTEX(e) \in V_S \lor LEFT_VERTEX(e) \in V_S\}$

Graph segmentation

- Segment S in a graph $G : S = (V_S, E_S) : V_S \subseteq V \land E_S = \{e \in E \mid RIGHT_VERTEX(e) \in V_S \lor LEFT_VERTEX(e) \in V_S\}$
- EDGES_OUT(S) = $\{e | e \in E_S \land LEFT_VERTEX(e) \in V_S \land RIGHT_VERTEX(e) \notin V_S\}$
- EDGES_IN(S) = { $e | e \in E_S \land RIGHT_VERTEX(e) \in V_S \land LEFT_VERTEX(e) \notin V_S$ }

Graph segmentation

- Segment S in a graph $G : S = (V_S, E_S) : V_S \subseteq V \land E_S = \{e \in E \mid RIGHT_VERTEX(e) \in V_S \lor LEFT_VERTEX(e) \in V_S\}$
- EDGES_OUT(S) = $\{e | e \in E_S \land LEFT_VERTEX(e) \in V_S \land RIGHT_VERTEX(e) \notin V_S\}$
- EDGES_IN(S) = { $e | e \in E_S \land RIGHT_VERTEX(e) \in V_S \land LEFT_VERTEX(e) \notin V_S$ }
- Segmentation $S(G) = \{S | S \text{ is a segment of } G\} \land \forall S, S' \in S(G), S \neq S' : V_S \cap V_{S'} = \emptyset \land \bigcup_{S \in S(G)} V_S = V$

Sequence of segments

• Sequence of segments $(S_1 \dots S_m) = S_1, \dots S_l \in S(G), \ 1 \le i \le m-1 : EDGES_OUT(S_i) \cap EDGES_IN(S_{i+1}) \ne \emptyset$

Sequence of segments

- Sequence of segments $(S_1 \dots S_m) = S_1, \dots S_l \in S(G), \ 1 \le i \le m-1 : EDGES_OUT(S_i) \cap EDGES_IN(S_{i+1}) \neq \emptyset$
- Connecting path $p = (e_1e_2 \dots e_n)$ in a segment sequence $(S_1 \dots S_m)$: $p \in (S_1 \dots S_m)$: $e_1 \in EDGES_OUT(S_1) \cap EDGES_IN(S_2) \land$ $e_n \in EDGES_OUT(S_{m-1}) \cap EDGES_IN(S_l) \land \exists i_2, i_3, \dots i_{m-1} : 1 <$ $i_2 < i_3 < \dots < i_{m-1} < n : \{e_2, \dots e_{i_2}\} \subseteq E_{S_2} \land \{e_{i_2}, \dots e_{i_3}\} \subseteq$ $E_{S_3} \land \dots \land \{e_{i_{l-2}}, \dots e_{i_{m-1}}\} \subseteq E_{S_{m-1}}$

• Acyclic path $p = (v_1e_1v_2e_2...e_nv_{n+1})$ in G: $1 \le i \le n, 1 \le j \le n+1, i \ne j : e_i \in E \land v_i, v_j \in V \land v_i = LEFT_VERTEX(e_i) \land v_{i+1} = RIGHT_VERTEX(e_i) \land v_i \ne v_j$

• Acyclic path
$$p = (v_1e_1v_2e_2...e_nv_{n+1})$$
 in G :
 $1 \le i \le n, 1 \le j \le n+1, i \ne j$: $e_i \in E \land v_i, v_j \in V \land v_i =$
 $LEFT_VERTEX(e_i) \land v_{i+1} = RIGHT_VERTEX(e_i) \land v_i \ne v_j$
• **Proper segment sequence** for a path $p = (v_1e_1v_2e_2...e_nv_{n+1})$:
 $S(p) = (S_1...S_m) : S(p)$ is a segment sequence $\land 1 \le i_1 < i_2 <$
 $\ldots < i_l \le n+1 : \{v_1, \ldots, v_{i_1}\} \subseteq V_{S_1} \land \{v_{i_1}, \ldots, v_{i_2}\} \subseteq$

$$V_{S_2} \wedge \ldots \wedge \{v_{i_l}, \ldots v_{n+1}\} \subseteq V_{S_l}$$

(日)

Segment graph

• Segment graph of G: $SG(G) = (S(G), X), X = \{h|h = (S_i, S_j) \Leftrightarrow 1 \le i, j \le k \land EDGES_OUT(S_i) \cap EDGES_IN(S_j) \neq \emptyset\}$

Representing paths in G by segment sequences in S(G)

Lemma

If a graph G = (V, E) has a segmentation S(G) that forms a graph SG(G), any path $p = (v_1e_1v_2e_2...e_nv_{n+1})$ in G can be represented by its proper segment sequence in S(G) and this representation is unique.

Lemma

If a graph G = (V, E) has a segmentation S(G) that forms a graph SG(G), a segment sequence in S(G) represents either some path in G or an empty path.

• If we generate all possible segment sequences in S(G), we get all possible paths in G

• If we generate all possible segment sequences in S(G), we get all possible paths in G

+ Fast generation of dense path representations

- If we generate all possible segment sequences in S(G), we get all possible paths in G
 - + Fast generation of dense path representations
 - Problem with disconnected segment sequences

- If we generate all possible segment sequences in S(G), we get all possible paths in G
 - + Fast generation of dense path representations
 - Problem with disconnected segment sequences
 - A huge amount of paths can be found in dense graphs between almost any two vertices, the number of such paths grows exponentially with the maximal length of a path allowed

- If we generate all possible segment sequences in S(G), we get all possible paths in G
 - + Fast generation of dense path representations
 - Problem with disconnected segment sequences
 - A huge amount of paths can be found in dense graphs between almost any two vertices, the number of such paths grows exponentially with the maximal length of a path allowed
- ⇒ A need for *I*- ρ -index which is a variation of rho-index, where only those paths between two vertices with length $\leq I$ and some paths having length > I are indexed

- If we generate all possible segment sequences in S(G), we get all possible paths in G
 - + Fast generation of dense path representations
 - Problem with disconnected segment sequences
 - A huge amount of paths can be found in dense graphs between almost any two vertices, the number of such paths grows exponentially with the maximal length of a path allowed
- ⇒ A need for *I*- ρ -index which is a variation of rho-index, where only those paths between two vertices with length $\leq I$ and some paths having length > I are indexed
 - Computational overhead bound with a weight computation of each segment sequence stored ⇒ An upper bound on a maximal number of connecting paths to be computed to find the one with a lowest weight

Weights in G and S(G) - Definitions

- Weight of vertex v: $w(v) \in <1, \infty>$
- Weight of path $p = (v_1 e_1 v_2 e_2 \dots e_n v_{n+1}) : w(p) = \sum_{i=1}^{n+1} w(v_i)$
- Set of weights of segment sequence: $|(S_1 \dots S_m)| = \{w(p) | p \in (S_1 \dots S_m)\}$
- Weight of segment sequence $\|(S_1 \dots S_m)\| = min(|(S_1 \dots S_m)|)$

Facts about weights in G and S(G)

- The relation between $(v_1e_1v_2e_2\ldots e_nv_{n+1})$ and $(S_1\ldots S_m)$
 - !! $m \le n + 1 \implies$ the segment sequence representation is always shorter or of the same length as the path it represents

Facts about weights in G and S(G)

- The relation between $(v_1e_1v_2e_2\ldots e_nv_{n+1})$ and $(S_1\ldots S_m)$
 - !! $m \le n + 1 \implies$ the segment sequence representation is always shorter or of the same length as the path it represents
 - $|| ||(S_1 ... S_m)|| ≤ w(p) \implies$ the proper segment sequence for a path p has always lower or the same weight as the path it represents

Proposing the limit /

Lemma

If a graph G = (V, E) has a segmentation S(G) that forms a graph SG(G) then for a limit I, segment sequences in S(G) having weight $\leq I$ represent all paths in G that have weight $\leq I$.

Proof.

Lets assume that there is a path p with $w(p) \leq l$ and that it is not present in the result represented by segment sequences with $||(S_1 \dots S_m)|| \leq l$. This would imply that the S(p) > w(p) but this is contradictory to the previous facts.

Upper bound on the minimal number of connecting paths

Lemma (An upper bound on a maximal number of connecting paths to be computed to find the one with a lowest weight)

A connecting path for a segment sequence $(S_1 \dots S_m)$ with the lowest weight is a path in CPs with the lowest weight.

- CPs is a set of connecting paths that have for each combination of common edges for each two neighboring segments in (S₁...S_m) minimal weight.
- The upper bound is represented by the number of combinations of common edges picked from m-1 sets of common edges .

Recursively applying the graph segmentation

- What if the segment graph SG(G) of the indexed graph is not small enough to be described by a path type matrix?
- Intuitively, the graph segmentation can be applied again to the segment graph SG(G) forming the SG(SG(G)).
- But what happens to the vertices' weights? Segments do not have weights assigned, since the segment's shortest traversal is context dependent.
- How to propose the vertices' weights to upper levels of the indexing structure?

Iteration step

Assigning weight to a segment

Altering the weight definitions for an iteration step

- G = (V, E), G' = SG(G) = (S(G), E'), G'' = (SG(SG(G)) = (S(S(G)), E'')
- Weight of vertex $v \in V$: $w(v) \in <1,\infty>$
- Weight of path $p = (v_1 e_1 v_2 e_2 \dots e_n v_{n+1}) : w(p) = \sum_{i=1}^{n+1} w(v_i), p \in G$
- Connecting segment sequence $(A_1 \dots A_m) \in G'$ for $(S_1 \dots S_m) \in G''$ denotes a path $(A_1e_1A_2 \dots e_{k-1}A_k)$ in G' where $e_1 \in (EDGES_OUT(S_1) \cap EDGES_IN(S_2)), e_{k-1} \in (EDGES_OUT(S_{m-1}) \cap EDGES_IN(S_m))$ and $(S_1 \dots S_m)$ is a proper segment sequence for $(A_1e_1A_2 \dots e_{k-1}A_k)$.

Altering the weight definitions

- Set of weights of segment sequence: $|(S_1 \dots S_m)| = \begin{cases} \{w(p) | p \in (S_1 \dots S_m)\}, S \in S(G) \\ \{|(A_1 \dots A_k)| | (A_1 \dots A_k) \in (S_1 \dots S_m)\}, S \in S(S(G)) \end{cases}$
- Weight of segment sequence $||(S_1 \dots S_m)|| = min(|(S_1 \dots S_m)|)$

ρ -index's structure

 ρ -index comprises of:

- Each segment is represented by its path type matrix
- EDGES_IN and EDGES_OUT are also stored for each segment
- Path type matrix of a segment graph at the topmost level

Outline of a ρ -index's structure

Stanislav Bartoň (Masaryk university, Brno)Designing a Path-oriented Indexing Structur

Creating $\rho - index$

Creating algorithm:

- Segmentation of the indexed graph *G* using the *vertex clustering* transformation
- Oreation of path type matrix for each segment, subsequent transitive closure computation
- Creation of a segment graph SG(G)
- **(9)** If the segment graph is not small enough \longrightarrow repeat previous steps

Path search algorithm - Breadth First

Path search algorithm - Depth First

Stanislav Bartoň (Masaryk university, Brno)Designing a Path-oriented Indexing Structur June 1, 2005

30 / 34

Practical experience with the approximative ρ -index

- The approximative (k, l)- ρ -index implementation:
 - Limiting parameters pseudo k and l
 - $ightarrow\,$ k limits the number of segment sequences stored in one matrix field
 - \rightarrow I limits the degree of computation of the transitive closure of the matrices representing segments and the top matrix
- ⇒ Insufficiency of the implemented (k, l) parameters lead to the design of the correct l - variant of the ρ -index by proposing weights of vertices and segment sequences to the design of the indexing structure

Practical experience with the approximative ρ -index

- Index efficiency is very dependent on a size of the cluster used to segment the graph
 - using the same (k, l) parameters lead into different number of paths indexed
 - the lower the size of the cluster the more precise results gained
- $\bullet\,$ The unlimited variant of the $\rho\text{-index}$ can be achieved using a small size of a cluster
 - \Rightarrow small number of stored segment sequences in each matrix field
 - \Rightarrow enables complete transitive closure computation for each segment

Future research

- Implementation and full evaluation of the *l-ρ*-index variation including optimized depth first search algorithm
- Explore the impact of a graph segmentation strategy to the indexing structure
 - Optimization of the vertex clustering technique
 - Further research of other segmentation techniques
- (k, l) − ρ − index another variation of ρ-index where only the first k paths of length ≤ l are indexed
- Explore the possibilities of distributing the ρ -index

Thank you for your attention.