Designing a Path-oriented Indexing Structure for a Graph Structured Data

Stanislav Bartoň
Masaryk university, Brno
June 1, 2005

An example of an RDF Graph

ρ operators

- Firstly introduced in the context of Semantic Web
- Designed to study complex relationships between entities defined as Complex Associations
- Can be generalized into terms of graphs and a problem of searching paths in them

ρ-path operator

ρ-path operator

ρ-path operator definition in graph theory terms:

$$
\rho-\mathbf{p a t h}(\mathbf{x}, \mathbf{y})=\left\{p=\left(v_{1} e_{1} v_{2} e_{2} \ldots e_{n} v_{n+1}\right) \mid v_{1}=x \wedge v_{n+1}=y \wedge p \text { is acyclic }\right\}
$$

ρ-connection operator

ρ-connection operator

ρ-connection operator definition in graph theory terms:
ρ-connection $(\mathbf{x}, \mathbf{y})=\left\{\left(p_{1}, p_{2}\right) \mid p_{1}=\left(v_{1} e_{1} v_{2} e_{2} \ldots e_{n} v_{n+1}\right), p_{2}=\right.$ $\left.w_{1} h_{1} w_{2} h_{2} \ldots h_{n} w_{m+1}\right) \wedge v_{1}=x \wedge w_{1}=y \wedge v_{n+1}=w_{m+1} \wedge p_{1}, p_{2}$ are acyclic $\}$

Designing the indexing structure

- Adjacency matrix
- Great graph description, simple transitive closure computation
- Can be easily modified to store paths themselves rather then just amounts of them
- The use of matrix algebra is limited to relatively small graphs due to space and time complexity
- With graph transformations towards graph simplification \Rightarrow transformed graph must have similar properties as the original graph had
- Graph segmentation (vertex clustering, graph to forest of trees)
- The transitive closure of segment graph models all paths from the original graph

Designing the indexing structure

- Path type matrix
- Instead of storing the amounts of paths, keeps the paths themselves
- + and * replaced by path concatenation and set union
- enables cycle detection during computation
- Vertex clustering
- two pass algorithm that divides the graph into several subgraphs of predefined size
- the vertices that are close to each other are put to same subgraphs
- very general, non-restrictive technique that can be applied to arbitrary directed graph

Path type matrix transitive closure

$$
M=\left(\begin{array}{cccccc}
& A & B & C & D & E \\
A & & \left\{\left(e_{1}\right)\right\} & \left\{\left(e_{2}\right)\right\} & \left\{\left(e_{3}\right)\right\} & \\
B & & & & & \left\{\left(e_{4}\right)\right\} \\
C & \left\{\left(e_{5}\right)\right\} & & & & \\
D & & & & &
\end{array}\right)
$$

Path type matrix transitive closure

Graph segmentation

- Segment \mathbf{S} in a graph $G: S=\left(V_{S}, E_{S}\right): V_{S} \subseteq V \wedge E_{S}=\{e \in E \mid$ $\left.R I G H T_{-} V E R T E X(e) \in V_{S} \vee L E F T_{-} V E R T E X(e) \in V_{S}\right\}$

Graph segmentation

- Segment \mathbf{S} in a graph $G: S=\left(V_{S}, E_{S}\right): V_{S} \subseteq V \wedge E_{S}=\{e \in E \mid$ $\left.R I G H T_{-} V E R T E X(e) \in V_{S} \vee L E F T_{-} V E R T E X(e) \in V_{S}\right\}$
- EDGES_OUT $(\mathrm{S})=\left\{e \mid e \in E_{S} \wedge \operatorname{LEFT} T_{-V E R T E X}(e) \in V_{S} \wedge R I G H T _V E R T E X(e) \notin V_{S}\right\}$
- EDGES_IN $(S)=\left\{e \mid e \in E_{s} \wedge R I G H T_{-} \operatorname{VERTEX}(e) \in V_{s} \wedge \operatorname{LEFT}\right.$ _VERTEX $\left.(e) \notin V_{s}\right\}$

Graph segmentation

- Segment \mathbf{S} in a graph $G: S=\left(V_{S}, E_{S}\right): V_{S} \subseteq V \wedge E_{S}=\{e \in E \mid$ $\left.R I G H T_{-} V E R T E X(e) \in V_{S} \vee L E F T_{-} V E R T E X(e) \in V_{S}\right\}$
- EDGES_OUT $(\mathrm{S})=\left\{e \mid e \in E_{S} \wedge \operatorname{LEFT}\right.$ _VERTEX $\left.(e) \in V_{S} \wedge R I G H T _V E R T E X(e) \notin V_{s}\right\}$
- EDGES_IN $(\mathrm{S})=\left\{e \mid e \in E_{s} \wedge R I G H T_{-} \operatorname{VERTEX}(e) \in V_{s} \wedge \operatorname{LEFT}\right.$ _VERTEX $\left.(e) \notin V_{s}\right\}$
- Segmentation $\mathbf{S}(\mathbf{G})=\{S \mid S$ is a segment of $G\} \wedge \forall S, S^{\prime} \in$ $S(G), S \neq S^{\prime}: V_{S} \cap V_{S^{\prime}}=\emptyset \wedge \bigcup_{S \in S(G)} V_{S}=V$

Sequence of segments

- Sequence of segments $\left(S_{1} \ldots S_{m}\right)=S_{1}, \ldots S_{l} \in S(G), 1 \leq i \leq$ $m-1: E D G E S _O U T\left(S_{i}\right) \cap E D G E S _I N\left(S_{i+1}\right) \neq \emptyset$

Sequence of segments

- Sequence of segments $\left(S_{1} \ldots S_{m}\right)=S_{1}, \ldots S_{l} \in S(G), 1 \leq i \leq$ $m-1$: EDGES_OUT $\left(S_{i}\right) \cap E D G E S _I N\left(S_{i+1}\right) \neq \emptyset$
- Connecting path $p=\left(e_{1} e_{2} \ldots e_{n}\right)$ in a segment sequence $\left(S_{1} \ldots S_{m}\right)$:
$p \in\left(S_{1} \ldots S_{m}\right): e_{1} \in E D G E S$ _OUT $\left(S_{1}\right) \cap E D G E S _I N\left(S_{2}\right) \wedge$ $e_{n} \in E D G E S _O U T\left(S_{m-1}\right) \cap E D G E S _I N\left(S_{l}\right) \wedge \exists i_{2}, i_{3}, \ldots i_{m-1}: 1<$ $i_{2}<i_{3}<\ldots<i_{m-1}<n:\left\{e_{2}, \ldots e_{i_{2}}\right\} \subseteq E_{S_{2}} \wedge\left\{e_{i_{2}}, \ldots e_{i_{3}}\right\} \subseteq$ $E_{S_{3}} \wedge \ldots \wedge\left\{e_{i_{I-2}}, \ldots e_{i_{m-1}}\right\} \subseteq E_{S_{m-1}}$

Paths

- Acyclic path $p=\left(v_{1} e_{1} v_{2} e_{2} \ldots e_{n} v_{n+1}\right)$ in G : $1 \leq i \leq n, 1 \leq j \leq n+1, i \neq j: e_{i} \in E \wedge v_{i}, v_{j} \in V \wedge v_{i}=$ $\operatorname{LEFT} T_{-} \operatorname{VERTEX}\left(e_{i}\right) \wedge v_{i+1}=R I G H T_{-} \operatorname{VERTEX}\left(e_{i}\right) \wedge v_{i} \neq v_{j}$

Paths

- Acyclic path $p=\left(v_{1} e_{1} v_{2} e_{2} \ldots e_{n} v_{n+1}\right)$ in G : $1 \leq i \leq n, 1 \leq j \leq n+1, i \neq j: e_{i} \in E \wedge v_{i}, v_{j} \in V \wedge v_{i}=$ $\operatorname{LEFT}, V E R T E X\left(e_{i}\right) \wedge v_{i+1}=R I G H T_{-} \operatorname{VERTEX}\left(e_{i}\right) \wedge v_{i} \neq v_{j}$
- Proper segment sequence for a path $p=\left(v_{1} e_{1} v_{2} e_{2} \ldots e_{n} v_{n+1}\right)$: $S(p)=\left(S_{1} \ldots S_{m}\right): S(p)$ is a segment sequence $\wedge 1 \leq i_{1}<i_{2}<$ $\ldots<i_{1} \leq n+1:\left\{v_{1}, \ldots v_{i_{1}}\right\} \subseteq V_{S_{1}} \wedge\left\{v_{i_{1}}, \ldots v_{i_{2}}\right\} \subseteq$ $V_{S_{2}} \wedge \ldots \wedge\left\{v_{i l}, \ldots v_{n+1}\right\} \subseteq V_{S_{1}}$

Segment graph

- Segment graph of $G: S G(G)=(S(G), X), X=\left\{h \mid h=\left(S_{i}, S_{j}\right) \Leftrightarrow\right.$ $\left.1 \leq i, j \leq k \wedge E D G E S _O U T\left(S_{i}\right) \cap E D G E S _I N\left(S_{j}\right) \neq \emptyset\right\}$

Representing paths in G by segment sequences in $S(G)$

Lemma

If a graph $G=(V, E)$ has a segmentation $S(G)$ that forms a graph $S G(G)$, any path $p=\left(v_{1} e_{1} v_{2} e_{2} \ldots e_{n} v_{n+1}\right)$ in G can be represented by its proper segment sequence in $S(G)$ and this representation is unique.

Lemma

If a graph $G=(V, E)$ has a segmentation $S(G)$ that forms a graph $S G(G)$, a segment sequence in $S(G)$ represents either some path in G or an empty path.

Preliminary evaluation

- If we generate all possible segment sequences in $S(G)$, we get all possible paths in G

Preliminary evaluation

- If we generate all possible segment sequences in $S(G)$, we get all possible paths in G
+ Fast generation of dense path representations

Preliminary evaluation

- If we generate all possible segment sequences in $S(G)$, we get all possible paths in G
+ Fast generation of dense path representations
- Problem with disconnected segment sequences

Preliminary evaluation

- If we generate all possible segment sequences in $S(G)$, we get all possible paths in G
+ Fast generation of dense path representations
- Problem with disconnected segment sequences
- A huge amount of paths can be found in dense graphs between almost any two vertices, the number of such paths grows exponentially with the maximal length of a path allowed

Preliminary evaluation

- If we generate all possible segment sequences in $S(G)$, we get all possible paths in G
+ Fast generation of dense path representations
- Problem with disconnected segment sequences
- A huge amount of paths can be found in dense graphs between almost any two vertices, the number of such paths grows exponentially with the maximal length of a path allowed
\Rightarrow A need for $I-\rho$-index which is a variation of rho-index, where only those paths between two vertices with length $\leq I$ and some paths having length $>I$ are indexed

Preliminary evaluation

- If we generate all possible segment sequences in $S(G)$, we get all possible paths in G
+ Fast generation of dense path representations
- Problem with disconnected segment sequences
- A huge amount of paths can be found in dense graphs between almost any two vertices, the number of such paths grows exponentially with the maximal length of a path allowed
\Rightarrow A need for $l-\rho$-index which is a variation of rho-index, where only those paths between two vertices with length $\leq I$ and some paths having length $>I$ are indexed
- Computational overhead bound with a weight computation of each segment sequence stored \Rightarrow An upper bound on a maximal number of connecting paths to be computed to find the one with a lowest weight

Weights in G and $S(G)$ - Definitions

- Weight of vertex v: $w(v) \in<1, \infty>$
- Weight of path $p=\left(v_{1} e_{1} v_{2} e_{2} \ldots e_{n} v_{n+1}\right): w(p)=\sum_{i=1}^{n+1} w\left(v_{i}\right)$
- Set of weights of segment sequence: $\left|\left(S_{1} \ldots S_{m}\right)\right|=\left\{w(p) \mid p \in\left(S_{1} \ldots S_{m}\right)\right\}$
- Weight of segment sequence $\left\|\left(S_{1} \ldots S_{m}\right)\right\|=\min \left(\left|\left(S_{1} \ldots S_{m}\right)\right|\right)$

Facts about weights in G and $S(G)$

- The relation between $\left(v_{1} e_{1} v_{2} e_{2} \ldots e_{n} v_{n+1}\right)$ and $\left(S_{1} \ldots S_{m}\right)$
!! $m \leq n+1 \Longrightarrow$ the segment sequence representation is always shorter or of the same length as the path it represents

Facts about weights in G and $S(G)$

- The relation between $\left(v_{1} e_{1} v_{2} e_{2} \ldots e_{n} v_{n+1}\right)$ and $\left(S_{1} \ldots S_{m}\right)$
!! $m \leq n+1 \Longrightarrow$ the segment sequence representation is always shorter or of the same length as the path it represents
!! \|($\left.S_{1} \ldots S_{m}\right) \| \leq w(p) \Longrightarrow$ the proper segment sequence for a path p has always lower or the same weight as the path it represents

Proposing the limit /

Lemma

If a graph $G=(V, E)$ has a segmentation $S(G)$ that forms a graph $S G(G)$ then for a limit l, segment sequences in $S(G)$ having weight $\leq I$ represent all paths in G that have weight ≤ 1.

Proof.

Lets assume that there is a path p with $w(p) \leq I$ and that it is not present in the result represented by segment sequences with $\left\|\left(S_{1} \ldots S_{m}\right)\right\| \leq 1$. This would imply that the $S(p)>w(p)$ but this is contradictory to the previous facts.

Upper bound on the minimal number of connecting paths

Lemma (An upper bound on a maximal number of connecting paths to be computed to find the one with a lowest weight)

A connecting path for a segment sequence $\left(S_{1} \ldots S_{m}\right)$ with the lowest weight is a path in CPs with the lowest weight.

- CPs is a set of connecting paths that have for each combination of common edges for each two neighboring segments in $\left(S_{1} \ldots S_{m}\right)$ minimal weight.
- The upper bound is represented by the number of combinations of common edges picked from $m-1$ sets of common edges .

Recursively applying the graph segmentation

- What if the segment graph $\mathrm{SG}(\mathrm{G})$ of the indexed graph is not small enough to be described by a path type matrix?
- Intuitively, the graph segmentation can be applied again to the segment graph $\mathrm{SG}(\mathrm{G})$ forming the $\mathrm{SG}(\mathrm{SG}(\mathrm{G}))$.
- But what happens to the vertices' weights? Segments do not have weights assigned, since the segment's shortest traversal is context dependent.
- How to propose the vertices' weights to upper levels of the indexing structure?

Assigning weight to a segment

> !!! Segment sequence $(E A B X)$ is disconnected
> $!!!\|(A B C)\|=3,\|(A B X)\|=4 \Longrightarrow w(B)=1$ or 2 ?

Altering the weight definitions for an iteration step

- $G=(\mathrm{V}, \mathrm{E}), \mathrm{G}^{\prime}=\mathrm{SG}(\mathrm{G})=\left(\mathrm{S}(\mathrm{G}), \mathrm{E}^{\prime}\right), \mathrm{G}^{\prime \prime}=(\mathrm{SG}(\mathrm{SG}(\mathrm{G}))=$ (S(S(G)), E")
- Weight of vertex $v \in V: w(v) \in\langle 1, \infty\rangle$
- Weight of path $p=\left(v_{1} e_{1} v_{2} e_{2} \ldots e_{n} v_{n+1}\right): w(p)=\sum_{i=1}^{n+1} w\left(v_{i}\right), p \in G$
- Connecting segment sequence $\left(A_{1} \ldots A_{m}\right) \in G^{\prime}$ for $\left(S_{1} \ldots S_{m}\right)$ $\in G^{\prime \prime}$ denotes a path $\left(A_{1} e_{1} A_{2} \ldots e_{k-1} A_{k}\right)$ in G^{\prime} where $e_{1} \in\left(\operatorname{EDGES}\right.$ _OUT $\left.\left(S_{1}\right) \cap \operatorname{EDGES_ IN}\left(S_{2}\right)\right), e_{k-1} \in$ (EDGES_OUT $\left.\left(S_{m-1}\right) \cap \operatorname{EDGES_ IN}\left(S_{m}\right)\right)$ and $\left(S_{1} \ldots S_{m}\right)$ is a proper segment sequence for $\left(A_{1} e_{1} A_{2} \ldots e_{k-1} A_{k}\right)$.

Altering the weight definitions

- Set of weights of segment sequence:

$$
\left|\left(S_{1} \ldots S_{m}\right)\right|=\left\{\begin{array}{l}
\left\{w(p) \mid p \in\left(S_{1} \ldots S_{m}\right)\right\}, S \in S(G) \\
\left\{\left|\left(A_{1} \ldots A_{k}\right)\right| \mid\left(A_{1} \ldots A_{k}\right) \in\left(S_{1} \ldots S_{m}\right)\right\}, S \in S(S(G))
\end{array}\right.
$$

- Weight of segment sequence $\left\|\left(S_{1} \ldots S_{m}\right)\right\|=\min \left(\left|\left(S_{1} \ldots S_{m}\right)\right|\right)$
ρ-index comprises of:
- Each segment is represented by its path type matrix
- EDGES_IN and EDGES_OUT are also stored for each segment
- Path type matrix of a segment graph at the topmost level

Outline of a ρ-index's structure

Top level matrix

Matrices for segments

Matrices fot segments

Original graph

Creating ρ - index

Creating algorithm:
(1) Segmentation of the indexed graph G using the vertex clustering transformation
(2) Creation of path type matrix for each segment, subsequent transitive closure computation
(3) Creation of a segment graph $S G(G)$
(4) If the segment graph is not small enough \longrightarrow repeat previous steps

Path search algorithm - Breadth First

Graph G

Accesible area from Start

Level 3

Level 2

Level 1

Path search algorithm - Depth First

Level 3
Level 2

Level 1

Step 2

Level 2

Level 1

Practical experience with the approximative ρ-index

- The approximative (k, l) - ρ-index implementation:
- Limiting parameters pseudo k and $/$
$\rightarrow k$ - limits the number of segment sequences stored in one matrix field
$\rightarrow I$ - limits the degree of computation of the transitive closure of the matrices representing segments and the top matrix
\Rightarrow Insufficiency of the implemented (k, I) parameters lead to the design of the correct I - variant of the ρ-index by proposing weights of vertices and segment sequences to the design of the indexing structure

Practical experience with the approximative ρ-index

- Index efficiency is very dependent on a size of the cluster used to segment the graph
- using the same (k, l) parameters lead into different number of paths indexed
- the lower the size of the cluster the more precise results gained
- The unlimited variant of the ρ-index can be achieved using a small size of a cluster
\Rightarrow small number of stored segment sequences in each matrix field
\Rightarrow enables complete transitive closure computation for each segment

Future research

- Implementation and full evaluation of the I - ρ-index variation including optimized depth first search algorithm
- Explore the impact of a graph segmentation strategy to the indexing structure
- Optimization of the vertex clustering technique
- Further research of other segmentation techniques
- $(k, I)-\rho$ - index - another variation of ρ-index where only the first k paths of length $\leq I$ are indexed
- Explore the possibilities of distributing the ρ-index

Thank you for your attention.

