English-to-Czech Machine Translation: Should We Go Shallow or Deep?

Ondřej Bojar obo@cuni.cz

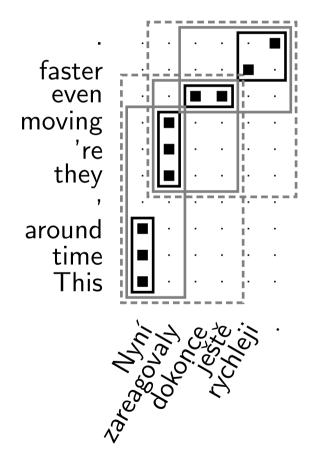
March 6, 2008

Outline

- Quick introduction to phrase-based MT.
- Deep syntactic transfer in MT:
 - Introduction to the theory of FGD.
 - Motivation for transfer at the deep layer.
 - Tree-to-tree transfer using Synchronous Tree Substitution Grammar.
 - Risks of data sparseness and methods of back-off.
- Automatic evaluation of MT quality: BLEU.
- Empirical results, discussion.
 - Sparseness again, factored translation.

Baseline: Phrase-Based MT

Т

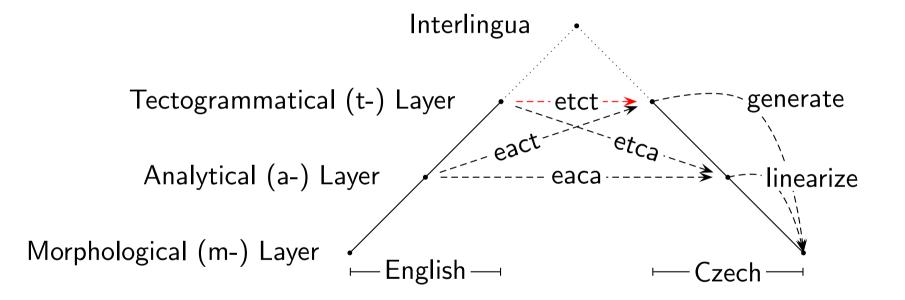


This time around	=	Nyní
they 're moving	=	zareagovaly
even	=	dokonce ještě
	=	
his time around, they 're moving	=	Nyní zareagovaly
even faster	=	dokonce ještě rychleji
	=	

Phrase-based MT: choose such segmentation of input string and such phrase "replacements" to make the output sequence "coherent" (3-grams most probable).

Open-source implementation: www.statmt.org/moses

Overview: Deep Syntatic Machine Translation



Tectogrammatics: Deep Syntax Culminating

Background: Prague Linguistic Circle (since 1926). Theory: Sgall (1967), Panevová (1980), Sgall, Hajičová, and Panevová (1986).

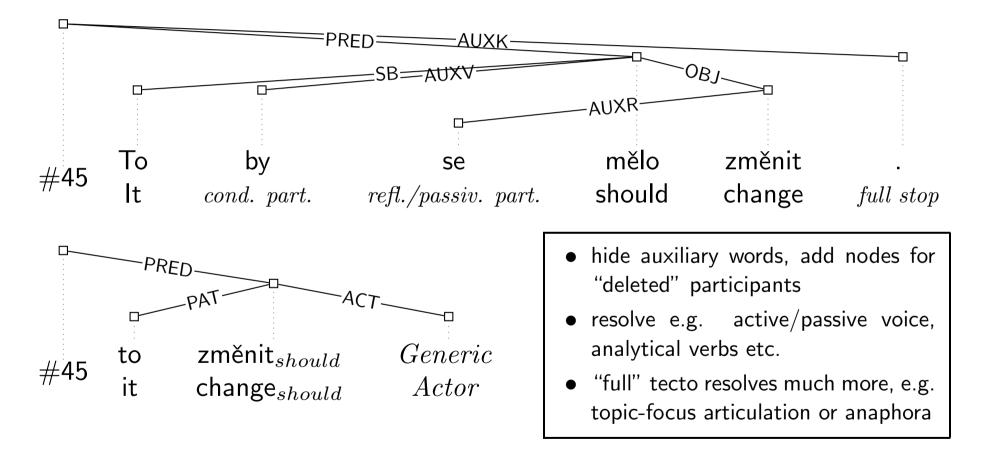
Materialized theory: Treebanks:

- Czech: PDT 1.0 (2001), PDT 2.0 (2006)
- Czech-English: PCEDT 1.0 (2004), PCEDT 2.0 (in progress)
- Arabic: PADT (2004)

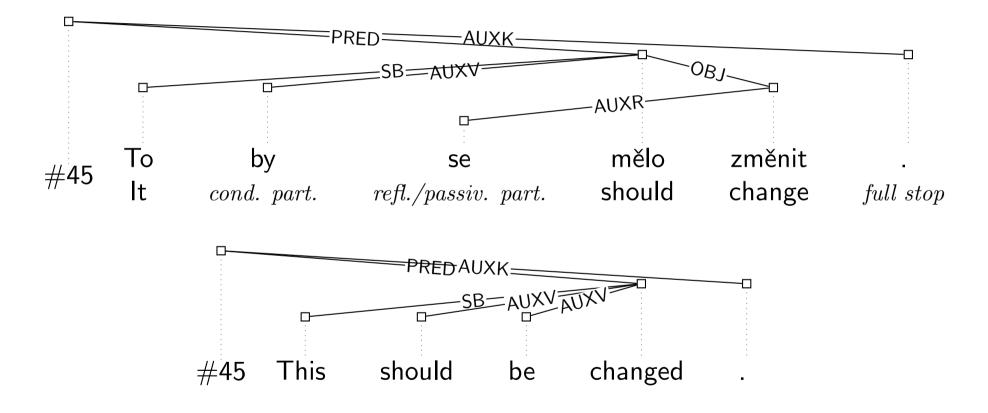
Practice: Tools:

- parsing Czech to surface: McDonald et al. (2005)
- parsing Czech to deep: Klimeš (2006)
- parsing English to surface: well studied (+rules convert to dependency trees)
- parsing English to deep: heuristic rules (manual annotation in progress)

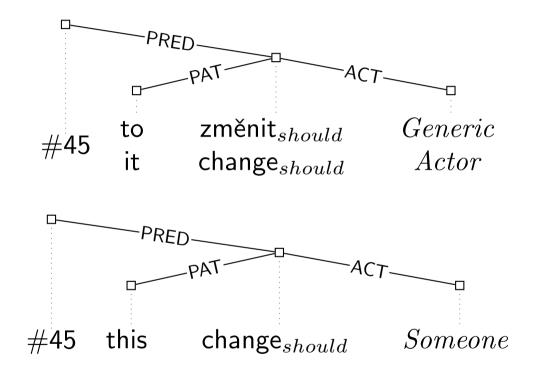
Analytic vs. Tectogrammatical



Czech and English Analytic



Czech and English Tectogrammatical



Predicate-argument structure: change_{should} (ACT: someone, PAT: it)

The Tectogrammatical Hope

Transfer at t-layer should be easier than direct translation: be-easier_{should}(ACT: transfer(LOC: t-layer), CMP: translation(RSTR: direct))

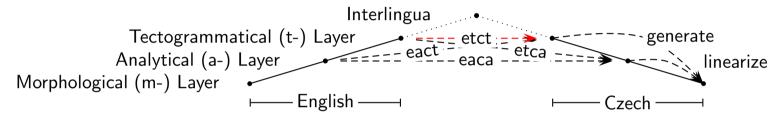
- Reduced structure size (auxiliary words disappear).
- Long-distance dependencies (non-projectivites) solved at t-layer.
- Word order ignored / interpreted as information structure (given/new).
- Reduced vocabulary size (Czech morphological complexity).
- Czech and English t-trees structurally more similar ⇒less parallel data might be sufficient (but more monolingual).
- Ready for fancy t-layer features: co-reference.

The complications:

- 47 pages documenting data format (PML, XML-based, sort of typed)
- 1200 pages documenting Czech t-structures "Not necessary" once you have a t-tree but useful understand or to blame the right people.

Tree-to-tree Transfer

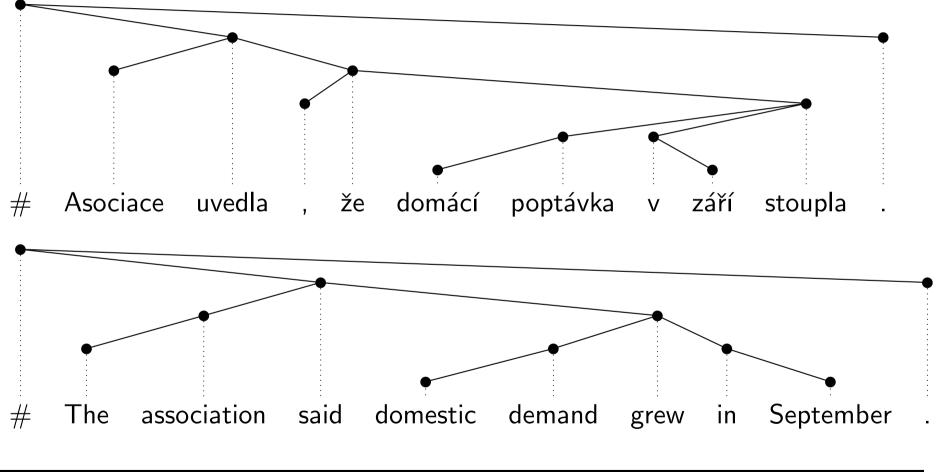
Synchronous Tree Substitution Grammar (Čmejrek, 2006).



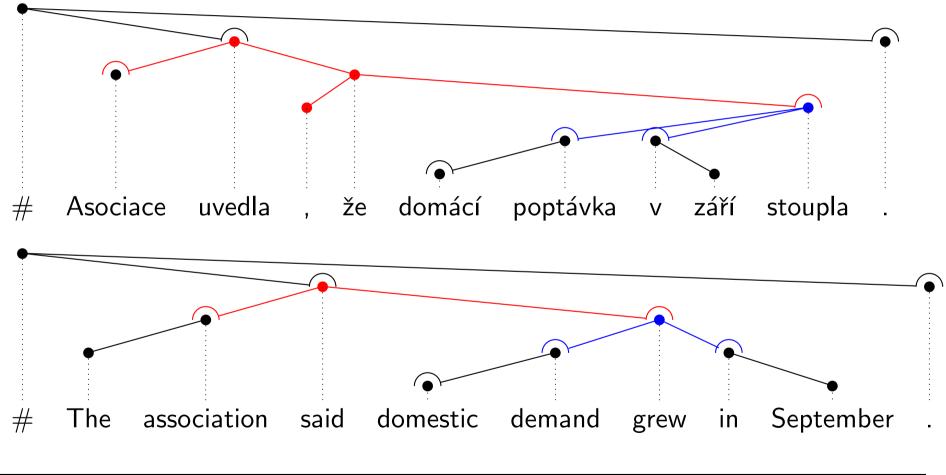
Given an input dependency tree:

- decompose it into known treelets,
- replace treelets by their treelet translations,
- join output treelets and produce output final tree,
 - for a-tree, read off the sequence of words,
 - for t-tree, run rule-based Czech sentence generation (Ptáček, 2005) to get the sequence of words.

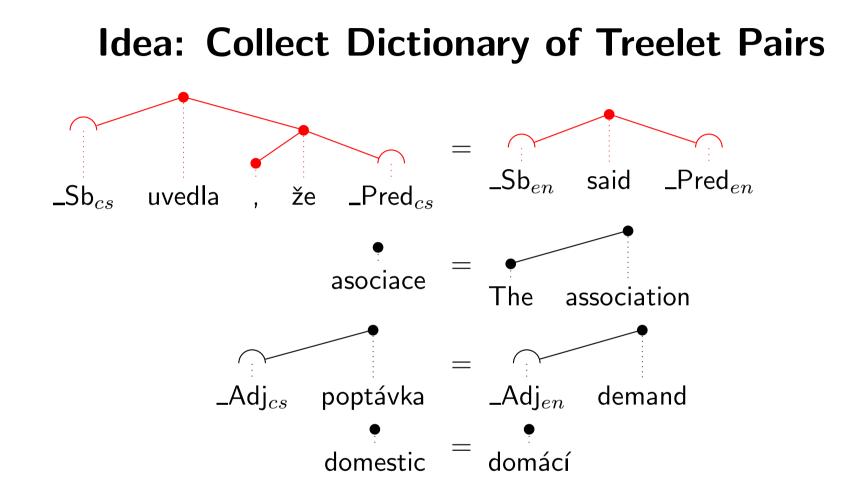
Idea: Observe a Pair of Dependency Trees



Idea: Decompose Trees into Treelets



Ondřej Bojar English-to-Czech Machine Translation: Should We Go Shallow or Deep? March 6, 2008



Little Trees Formally

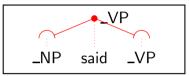
Given a set of states Q and a set of word labels L, we define:

A LITTLE TREE or TREELET t is a tuple (V, V^i, E, q, l, s) where:

- V is a set of NODES,
- $V^i \subseteq V$ is a nonempty set of INTERNAL NODES. The complement $V^f = V \setminus V^i$ is called the set of FRONTIER NODES,
- $E \subseteq V^i \times V$ is a set of directed edges starting from internal nodes only and forming a directed acyclic graph,
- $q \in Q$ is the root state,
- $l: V^i \rightarrow L$ is a function assigning labels to internal nodes,
- $s: V^f \to Q$ is a function assigning states to frontier nodes.

Optionally, we can keep track of local or global ordering of nodes in treelets.

I depart from Čmejrek (2006) in a few details, most notably I require at least one internal node in each little tree.



Treelet Pair Formally, Synchronous Derivation

A TREELET PAIR $t_{1:2}$ is a tuple (t_1, t_2, m) where:

- t_1 and t_2 are little trees for source and target languages (L_1 and L_2) and states (Q_1 and Q_2),
- m is a 1-1 MAPPING of frontier nodes in t_1 and t_2 . Unlike Čmejrek (2006), I require all frontier nodes mapped, i.e. equal number of left and right frontier nodes.

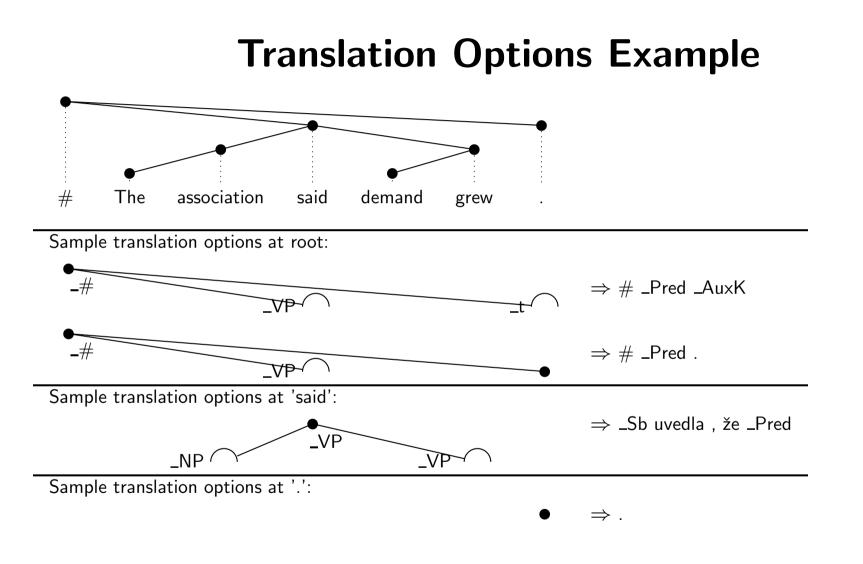
From a starting SYNCHRONOUS STATE $Start_{1:2} \in Q_1 \times Q_2$, a SYNCHRONOUS DERIVATION δ constructs a pair of dependency trees by:

- attaching treelet pairs $t_{1:2}^0, \ldots, t_{1:2}^k$ at corresponding frontier nodes, and
- ensuring that the root states $q_{1:2}^0, \ldots, q_{1:2}^k$ of the attached treelets pairs $t_{1:2}^0, \ldots, t_{1:2}^k$ match the frontier states of the corresponding frontier nodes.

Can define probability of a derivation: $p(\delta) = p(t_{1:2}^0 | Start_{1:2}) * \prod_{i=1}^k p(t_{1:2}^k | q_{1:2}^k)$

Decoding STSG

- Find target tree such that the synchronous derivation δ is most likely.
- Implemented as two-step top-down beam-search similar to Moses:
- 1. Prepare translation options table:
 - For every source node consider every subtree rooted at that node.
 - If the subtree matches the source treelet in a treelet pair, we've got a translation option.
 - Keep only best τ translation options at a node.
- 2. Gradually expand partial hypotheses:
 - Starting at root use translation options to cover source tree.
 - Keep only best σ partial hypotheses of a given size (input nodes covered).



Ondřej Bojar English-to-Czech Machine Translation: Should We Go Shallow or Deep? March 6, 2008



17

Ondřej Bojar English-to-Czech Machine Translation: Should We Go Shallow or Deep? March 6, 2008

Treelet Alignments: Heuristics

- Similar to common phrase-extraction techniques given word alignments.
- Basic units are little trees instead of word spans.
- 1. Obtain **node-to-node alignments** (GIZA++ on linearized trees).
- 2. Extract all treelet pairs satisfying these conditions:
 - no more than i internal nodes and f frontier nodes,
 - compatible with node alignment,

e.g. no node-alignment link leads outside the treelet pair and frontiers are linked.

• satisfying **STSG property**.

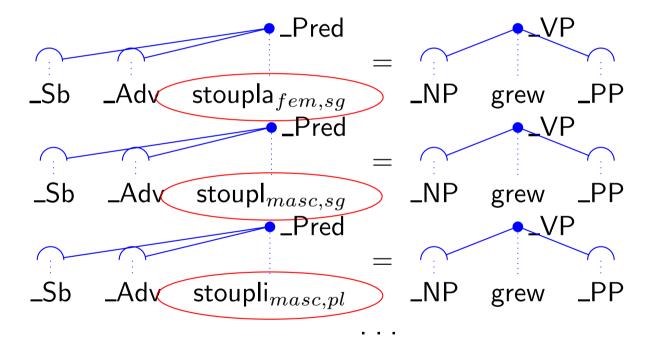
All children of an internal node have to be included in the treelet (as frontiers or internals),

- ie. assume no adjunction operation was necessary to construct the full tree.
- 3. Estimate probabilities, e.g. $p(t_1, t_2 | \text{root state}_1, \text{root state}_2)$

Risks of Data Sparseness (1)

Morphological richness:

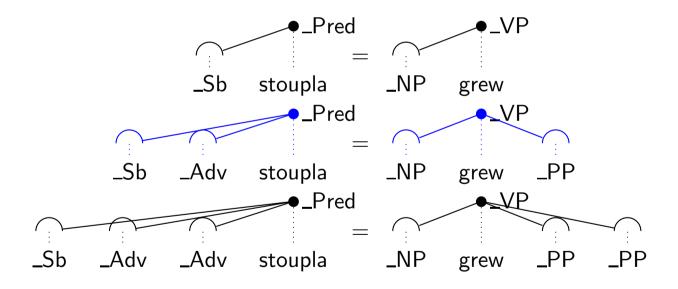
• not an issue at t-layer, where nodes hold t-lemmas.



Risks of Data Sparseness (2)

Number and states of frontiers for additional adjuncts:

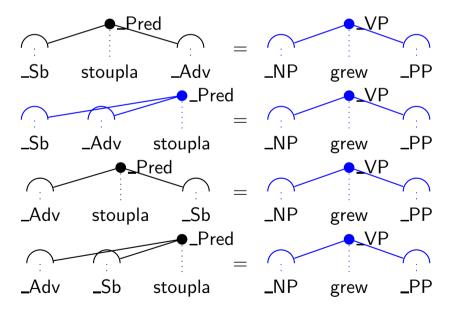
• STSG property: Once a node is used as internal, all its children have to be included in the little tree as internals or frontiers. (There is no adjunction.)



Risks of Data Sparseness (3)

Ordering of nodes:

- Czech has a relatively free word order, many permutations possible.
- Not an issue if we decide to leave the tricky part for someone else, e.g. a tecto→analytical generator.



Back-off Schemes

Preserve all. Full-featured treelets are collected in training phase. Required treelets often never seen in training data \Rightarrow back-off needed.

- **Drop frontiers.** Observed treelets reduced to internal nodes only. Given a source treelet, internals translated by the dictionary, frontiers generated on the fly, labelled and positioned probabilistically.
- **Word for word.** Useful for single-internal treelets only: The label of the root internal translated independently, frontiers generated on the fly, labelled probabilistically, order unchanged.

Keep a word non-translated to handle unknown words.

Allowed only for single-internal treelets, frontiers mapped probabilistically.

Transfer numeric expression, showing possibility to include hand-coded rules.

Implementation Details

• STSG model extended to log-linear combination of features:

best derivation
$$\hat{\delta} = \operatorname*{argmax}_{\delta \in \Delta(T_1)} \exp\left(\sum_{m=1}^M \lambda_m h_m(\delta)\right)$$
 (1)

instead of
$$\hat{\delta} = \underset{\delta \in \Delta(T_1)}{\operatorname{argmax}} p(t_{1:2}^0 | Start_{1:2}) * \prod_{i=1}^k p(t_{1:2}^k | q_{1:2}^k)$$
 (2)

- Tinycdb (like GDBM) to store and access treelet dictionaries.
- Target tree structure can be disregarded (output linearized right away).
 IrstLM to promote hypotheses containing frequent trigrams.
- Implemented in Mercury (Somogyi, Henderson, and Conway, 1995).
- Parallel computation on Sun Grid Engine cluster (160 CPUs in 40 machines).

Evaluation Metric: BLEU

 $\mathsf{BLEU}\approx\mathsf{ratio}$ of 1- to 4-grams of hypothesis confirmed by a reference translation

System output (hypothesis):

 $n{=}1:$ For example , Fidelity prepares for case market plunge ads several months in advance .

n=2: For example , Fidelity prepares for case market plunge ads several months in advance . Reference translations:

For example , Fidelity prepared advertisements for a potential market slump a few months in advance .

For example , Fidelity prepared ads some months in advance for a case where the market fell .

For instance Fidelity prepared ads for the event of a market plunge several months in advance .

- within the range 0-1, sometimes written as 0 to 100%
- humans: ~60%, Google Chinese \rightarrow English: ~30%, Arabic \rightarrow English: ~50%.

Callison-Burch et al. (2007) show better-performing metrics, though targetlanguage dependent.

Empirical Evaluation				
	BLEU	-root same be true atlantic -root RSTR PRED RSTR 7??		
eact	3.0±0.3	-root- adj.denot v adj.denot n.denot -root- neg0 nil neg0 sg -root- ind -root- ind tecl		
etct	5.0 ± 0.5			
etca	$6.3{\pm}0.6$			
eaca	$8.6{\pm}0.6$	-root- The same is true across the Atlantic . -root- the same be true across the Atlantic . -root- Th-X- nAVX-1 VB-3- AAX-1 TI Th-X- NCX54- Z		
ерср	$10.3 {\pm} 0.7$	a: -root- Th-X- AAX-K1 VB-5-3- AAX-X-1 TI Th-X- NCX3X- Z: -root- t NPB VP ADJP PP t NPB t		
epcp with no state labels	$11.0{\pm}0.7$			
Phrase-based (Moses)				
Vanilla	$12.9{\pm}0.6$	-root- the same is true across the atlantic .		
Factored	$14.2{\pm}0.7$	−ooc⊢ the same be true across the attantic . −ooc⊢ Th→C AXO+C1 VB-5-3 AXO+C1 TI→ Th→C→ NCXSK Z→→ −rooc⊢ t NP8 VP ADJP PP t NP8 t		

ACL 2007 WMT shared task data, 55k training sentences, 964 test sentences.

Observations and Explanations

Why target t-layer performs worst?

- errors accumulate (noisy input parse, noisy transfer, noisy generation),
- increased data sparseness (we'll discuss this more),
- rule-based generation does not make use of n-gram language model, BLEU disfavours methods without language models.
- lack of tree-based language model.

Why a-transfer performs worse than p-transfer (no tree structure)?

• Incompatibilities of the parses and alignment prevent treelet extraction.

Why is Moses better than p-transfer?

- We don't allow any reordering of phrases.
- Moses has proper minimum-error rate training, we try a few settings.

One Source of Data Sparseness: Vocabulary Size

			Vocabulary		States	
	BLEU	Sents	source	target	source	target
eact	3.02 ± 0.34	56k	64k	128k	29	67
etct	5.02 ± 0.47	57k	81k	133k	28	67
etca	$6.28 {\pm} 0.57$	56k	80k	85k	28	451
eaca	$8.59 {\pm} 0.60$	56k	60k	83k	29	450
ерср	$10.34 {\pm} 0.66$	56k	60k	83k	29	450
epcp with no state labels	$11.03 {\pm} 0.68$	56k	60k	83k	2	2

Why is t-layer vocabulary so much bigger:

• t-nodes have about 25 attributes: t-lemma, functor, gender, person, tense, iterativeness, dispositional modality, . . .

What do we use as STSG states: (i.e. the thing checked when attaching treelets)

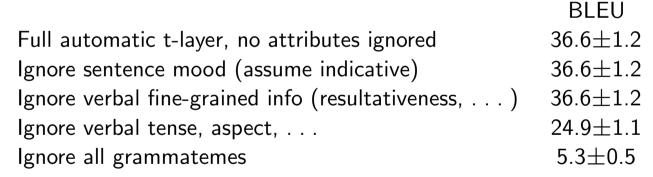
- t-layer: functors (ACT, PAT, PRED, . . .)
- a-layer: agreement info (N-accusative-prep'do', A-genitive, . . .)
- p-layer: agreement info or nothing

Upper Bound on MT Quality via t-layer

Interlingua

– English –

- Analyse Czech sentences to t-layer.
- Optionally ignore some node attributes.
- Generate Czech surface.
- Evaluate BLEU against input Czech sentences.



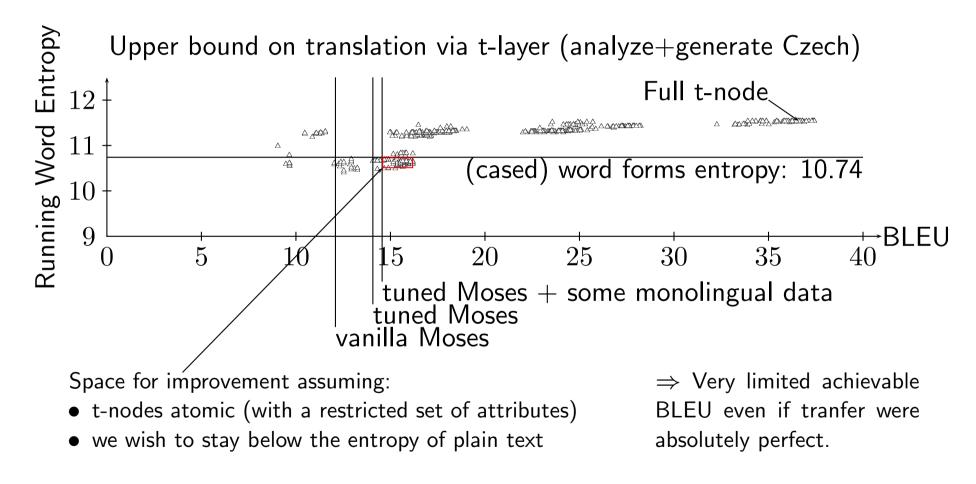
- \Rightarrow Node attributes obviously very important.
- \Rightarrow Can we find a balance of small vocabulary and high achievable BLEU?

generate

(a+t)-parse Czech

Czech

No More Fairy Tales on Vocabulary Reduction



Consequence: Need for Factored Translation

- t-layer by itself increases complexity of node label choice.
- ⇒ cannot treat output nodes labels as atomic: go.V.past.third.sg...

The bare minimum:

- two factors to translate lexical item and grammatical features separately
- check for internal output compatibility (using more monolingual data)

English	Czech		
t-lemma	→ t-lemma –		
other attributes—other attributes—			

Conflicting with the key concept of STSG: treelet shape (and size) alternations.

 \Rightarrow Open question: factored treelet translation. First results: BLEU 5.6 instead of 5.0

Conclusion

- Deep syntactic transfer gives a hope for better MT quality.
- However, the more complex setup has more free parameters:
 - The definition of annotation layers.
 - The methods, tools and their configurations to get to the defined layers.
 - \Rightarrow (Too) big space for experimenting.
- Errors accumulate at every translation step.
 - It would be necessary to optimize in an end-to-end fashion.
 - \Rightarrow System components should pass several options, not just the best one.
- Troubles with vanilla STSG:
 - Strong assumptions (compatible structure, atomic labels) increase sparseness.
 - \Rightarrow Necessary to improve back-off techniques, add factored translation.

 \Rightarrow Phrase-based translation wins so far. (There are still some optimists.)

References

Callison-Burch, Chris, Cameron Fordyce, Philipp Koehn, Christof Monz, and Josh Schroeder. 2007. (Meta-) Evaluation of Machine Translation. In <u>Proceedings of the Second Workshop on Statistical Machine Translation</u>, pages 136–158, Prague, Czech Republic, June. Association for Computational Linguistics.

Čmejrek, Martin. 2006. <u>Using Dependency Tree Structure for Czech-English Machine Translation</u>. Ph.D. thesis, ÚFAL, MFF UK, Prague, Czech Republic.

Klimeš, Václav. 2006. <u>Analytical and Tectogrammatical Analysis of a Natural Language</u>. Ph.D. thesis, ÚFAL, MFF UK, Prague, Czech Republic.

McDonald, Ryan, Fernando Pereira, Kiril Ribarov, and Jan Hajič. 2005. Non-Projective Dependency Parsing using Spanning Tree Algorithms. In <u>Proceedings of HLT/EMNLP 2005</u>, October.

Panevová, Jarmila. 1980. Formy a funkce ve stavbě české věty [Forms and functions in the structure of the Czech sentence]. Academia, Prague, Czech Republic.

Ptáček, Jan. 2005. Generování vět z tektogramatických stromů Pražského závislostního korpusu. Master's thesis, MFF, Charles University, Prague.

Sgall, Petr. 1967. Generativní popis jazyka a česká deklinace. Academia, Prague, Czech Republic.

Sgall,Petr,EvaHajičová,andJarmilaPanevová.1986.The Meaning of the Sentence and Its Semantic and Pragmatic Aspects.Academia/ReidelPublishingCompany,Prague, Czech Republic/Dordrecht, Netherlands.Vertical Aspects.Academia/ReidelPublishingCompany,

Somogyi, Zoltan, Fergus Henderson, and Thomas Conway. 1995. Mercury: An Efficient Purely Declarative Logic

Ondřej Bojar English-to-Czech Machine Translation: Should We Go Shallow or Deep? March 6, 2008

Programming Language. In <u>Proceedings of the Australian Computer Science Conference</u>, pages 499–512, Glenelg, Australia, February.