
Jiří Dokulil

KSI MFF UK

New ways of visualizing and

querying RDF data

�

Outline
� RDF
� RDF query life cycle
� RDF visualization
� TriQuery
� Bobox
� Conclusion

�

RDF
� part of the Semantic Web

Ւp

RDF
� statements about resources
� triples

� subject, predicate, object
� labeled, directed multi-graph
� abstract model

� serialization formats
� RDF / XML
� N3
� Turtle
� 3

� further standards built on top of RDF
� RDFS, OWL

� outside scope of this thesis

一ι

RDF query life
� idea

� what does the user want to achieve
� what do the inputs look like
� what should the result look like

� query formulation
� textual representation of the intended

transformation within constraints of a query system

� query execution
� correct and efficient execution

Ւp

RDF query life – our work
� idea RDF visualizer

� what does the user want to achieve
� what do the inputs look like
� what should the result look like

� query formulation TriQuery
� textual representation of the intended

transformation within constraints of a query system

� query execution Bobox
� correct and efficient execution

Ւp

RDF visualization
� support RDF-enabled software development

� display data in a compact way
� display “raw” RDF data
� handle large data sets

� visualization algorithm
� triangle layout
� edge routing
� node merging

� supplementary techniques
� navigation
� animation
� 3

̝Ḁ

RDF visualization – example

ϰǻ

RDF visualization – remarks
� node merging could be adopted for most other RDF

visualizers and improve their performance
� usability of triangle layout depends on node merging

� wide but low rectangles would result in a lot of wasted
space

� triangle layout requires quadratic area
� optimal for rooted trees with layered drawing

� many technical details (see the thesis)
� special views for specific situations (e.g. reifications)
� limitation on reasonable node and handling of overflows
� implementation – user interface, architecture
� 3

Ւ䂰

TriQuery
� XQuery extension

� why XQuery?
� powerful, yet relatively simple
� well standardized
� we are already developing an XQuery engine
� RDF is closely related to XML in some aspects

� XSD data types
� RDF/XML serialization format

� new language constructs
� extension of the XQuery grammar (14 new or changed rules)
� TriQuery queries are not valid XQuery queries
� using pure XQuery to handle RDF has been tried, but is hard

to use due to long expressions with many function calls

Ք뱠

Records in XQuery
� introduction of records

� the only modification of XQuery grammar and
evalueation

� record is a structured value
� identifier ⇒ value

� identifier – qualified name or number
� names and numbers cannot be mixed
� names ⇒ named record
� numbers ⇒ anonymous record

� value – sequence of values
� may not contain records – no nested records are allowed

Ք뱠

Records – language constructs
� constructor
[8, “Hello, world!”, $x]

[eight := 8, hello := “Hello, world!”, var := $x]

� dot – field access
let $x=[1]

let $y=[one := 1]

return ($x.1, $y.one)

� (natural) extension of existing operators
� sequence concatenation, equality testing, node

comparators, FLWOR

Օ

Records – signature
� signature of a record is the set of keys

� [one := 1, two := 2] has signature {1,2}

� signature of a sequence
� if sequence contains a record, it must contain

nothing but records
� if sequence contains a record, all must have the

same signature
� the signature of a sequence is the signature shared

by the records in the sequence, or empty set if no
records are present

Օ

Records – signature cont.
� signature of an expression

� the signature of the sequence returned by the
expression

� can be determined statically by examining a query
� all language construct are defined to allow this
� improper use can be detected during query compilation
$x = [one := 1]

$y = [uno := 1]

return ($x, $y)

� invalid – $x and $y have different signatures, the result of
concatenation would violate the restriction of sequences
of records

Օ

Records – pattern matching
� searches for a specific pattern in a sequence
� <expression> match (<pattern>)

� expression is TriQuery expression
� must provide sequence of anonymous records

� pattern is a set of n-tuples
� n is the size of the signature of the sequnce
� values may be expressions or a variable

� result is a sequence of named records
� names are the names of variables used in the pattern
� for each possible variable mapping that transforms

the pattern into a subset of the input, one record
(wioth the corresponding variable mapping) is added
to the result sequence

�

Records – pattern matching cont.
� basic example
for $r in $x match{ "John“ {1+2} ?a . ?a ?b ?c}

return

<r><a>{$r.a}{$r.b}<c>{$r.c}</c></r>

� RDF example
let $c := triq:doc("data1")

return $c with triq:RDFS match

($x ex:first-name $fn . $x ex:last-name $ln)

� uses the optional with modifier
� the pattern matching may then perform any transformation

defined by the implementation, providing that the signature
of the output is preserved

�

RDF support
� based on records
� no further extension to XQuery

� only a set of RDF-related functions

� RDF data set represented as a set of anonymous
records with three fields

� pattern matching
� TriQuery pattern matching similar to basic graph

patterns in SPARQL or SeRQL

�

RDF support – examples
� easy conversions from RDF to XML and back
let $d := triq:doc("people.rdf")

for $x in $d match ($x ex:id $id .

$x ex:name $n . $x ex:mail $m)

return <person id="{$x.id}">

<name>{$x.name}</name>

<email>{$x.mail}</email></person>

let $d := fn:doc("in.xml")

for $x in $d//item

return [$x/id, ex:name, $x/name],

[$x/id, ex:price, $x/price]

�

RDF support – examples cont.
� construction of new RDF statements
let $d := triq:doc("people.rdf")

for $x in $d match ($person ex:age $age)

where $x.age>=13 and $x.age<=19

return [$x.person, ex:age-group, ex:teenager]

� matching with RDFS entailment
� like normal match, but the input data is extended with

statements that can be inferred using RDFS

let $d := triq:doc("people.rdf")

for $x in $d with triq:rdfs match ($person

rdf:type ex:person)

return $x.person

�

RDF support – examples cont.
fn:count(

(

let $r := triq:doc("people.rdf"),

let $i :=

(

for $n in fn:doc("input.xml")//father

return [father/id, rdf:type, ex:father]

)

return $r,$i

)

with triq:rdfs match ($person rdf:type ex:man)

)

Օ긠

RDF examples (SP2Bench Q1)
SELECT ?yr

WHERE {

?journal rdf:type bench:Journal .

?journal dc:title

"Journal 1 (1940)"^^xsd:string .

?journal dcterms:issued ?yr

}

for $x in triq:doc("dblp") match (

$journal rdf:type bench:Journal .

$journal dc:title "Journal 1 (1940)" .

$journal dcterms:issued $yr)

return $yr

ε

RDF examples (SP2Bench Q9)
SELECT DISTINCT ?predicate

WHERE {

{

?person rdf:type foaf:Person . ?subject ?predicate ?person

} UNION {

?person rdf:type foaf:Person . ?person ?predicate ?object

}

}

return fn:distinct(

let $x := triq:doc("dblp") match (

$person rdf:type foaf:Person.

$subject $predicate $person)

let $y := triq:doc("dblp") match (

$person rdf:type foaf:Person.

$person $predicate $object }

return $x.predicate, $y.predicate

)

� notice the use of filed access operator on sequence of records: $x.predicate

ϰǻ

TriQuery vs XSPARQL
� both extensions of XQuery to handle RDF
� XSPARQL

� DERI, W3C Member Submission, January 2009
� inclusion of SPARQL, “glue”
� mixes languages with different paradigms

� XQuery – closed, full compositionality, expressions
� SPARQL – CONSTRUCT, no compositionality, SQL-like constructs

� can be implemented by combining XQuery and SPARQL
engines
� query rewriting minimizes changes to XQuery engine

� TriQuery
� records
� more general, not only RDF

� semantics not tailored to exactly fit for RDF

� requires significant changes to XQuery engine or completely
new engine
� allows optimizations across XML – RDF border

՚늀

Bobox
� parallel computation framework
� one class of problems

� many computational components connected to form
a non-linear pipeline

� data-intensive
� independent on query language and data

representation
� execution control handled by the framework

� unlike traditional parallelization libraries
� user specifies the way the pipeline is connected
� execution is controlled by the flow of the data

Ֆ쇠

Bobox model
� definition of the structure of the

pipeline
� usually an execution plan of a

query

� boxes
� components that perform the actual

computation

� vias
� links between boxes
� control data flow

՚뉰c

Execution
� model instantiated

� model instance looks like the model, contains actual
code

� task level parallelism
� task

� unit of work (data and algorithm) to be executed in parallel
� box and input data
� placed into task pool when ready to execute

� thread pool
� fixed number of execution threads that execute the tasks

from the task pool

ε

Execution – overview

�

Bobox – the data
� the data is passed along the pipeline
� envelope

� a unit of data to be passed
� similar to a table in a column oriented DBMS

� data for each column is stored separately in a continuous
block of memory

� compared to each row being stored as a record and table
being a sequence of such records

� allows data level parallelism, e.g. SSE instructions

� poisoned pill
� special kind of envelope
� when poisoned pill passes through a certain point, it

guarantees no further envelopes will pass it

Օ夀

Bobox – experiments
� an experimental implementation of key Bobox

components
� can execute individual queries
� no physical data store, only in-memory database

ϰǻ

Execution of a simple pipeline

Օ夀

Performance on multiple CPU cores

4 physical CPU cores, hyperthreading (8 logical CPU cores), CPU intensive
operations with floating point arithmetics

ϰǻ

SP2Bench Q5b
SELECT DISTINCT ?person ?name

WHERE {

?article rdf:type bench:Article .

?article dc:creator ?person .

?inproc rdf:type bench:Inproceedings .

?inproc dc:creator ?person .

?person foaf:name ?name }

� Bobox 486ms
� no compiler (yet)
� 4 CPU cores

� Sesame 683ms
� slightly more stable results
� limited use of parallelism

� can outperform current Bobox
implementation on single core

Օ夀

Conclusion
� contributions to several steps of an RDF query life

cycle
� graph drawing algorithms (triangle layout, edge

routing)
� extension of XQuery to allow easy inclusion of

RDF handling
� Bobox parallel framework

� task and data level parallel computation
� XQuery
� SPARQL
� other DBMS and data processing

ε

Future work
� new implementation of RDF visualizer

� currently uses SDL libraries for GUI
� poor performance for animations in windowed mode

� implementation of TriQuery
� reference implementation
� Bobox implementation

� extension of the XQuery engine

� improvements to Bobox
� new scheduler and memory allocator
� run-time modification of model instances
� distributed execution

掠δ

The End

Thank you for your attention!

