Versatile Visualization, Authoring and Reuse of Ontological Schemas (Leveraging on Dataset Summaries)

Marek Dudáš

Main Topics

OWL modeling styles

- Semantic Web
- Using different combinations of OWL constructs to represent the same situation
- Analyzing ontology coverage and usage
 - What particular situations **can** a particular Ontology **describe**
 - How is a particular ontology used in a particular dataset (what types of instances are linked with which predicates)
 Dataset Visualization

Different OWL Modeling Styles - Example

Different OWL Modeling Styles - Example

Different OWL Modeling Styles Fit Different Use Cases

- Possible consequences:
 - Might lead to re-developing instead of re-using an ontology
 - Difficulties with following the "right modeling style" when developing an ontology
- Possible solution:
 - Use a meta-language allowing to unify the different styles into a single pattern
 - Transform an existing ontology into it or design the metamodel from scratch
 - and then generate OWL variants from it automatically

Different OWL Modeling Styles Fit Different Use Cases

- Possible consequences:
 - Might lead to re-developing instead of re-using an ontology
 - Difficulties w when develo
 Models (Svátek et al., OWLED 2013)
- Possible solution:
 - Use a meta-language allowing to unify the different styles into a single pattern
 - Transform an existing ontology into it or design the metamodel from scratch
 - and then generate OWL variants from it automatically

PURO Ontological Background Models (OBM)

- Represents a specific part of reality (at the "instance level") "closer to the real world than OWL"
 - Not for direct usage for data representation
 - Designed as an aid for ontology engineering
- PURO: Particular-Universal Relationship-Object distinctions
- Language terms "to some extent" analogical to OWL language constructs, they can be mapped to corresponding OWL representation

Proposal of OBM Exploitation for Ontology Engineering

Transformation of an existing ontology into more suitable modeling style

Building a new ontology in a desired modeling style

PhD Goals:

Development of visualization and transformation methods and their experimental implementation in an architecture consisting of three tools:

Transformation Based on OBM-to-OWL Patterns

 consisting of OBM fragment and corresponding OWL fragment variants

Related Problems

- Heterogeneity in OWL ontology design styles
 PURO Modeler
 - Might lead to difficulties with
 - Ontology reuse and new ontology development
 - (already discussed)
 - Comparing ontology local coverage (how well can the ontology describe a specific real world situation)
- Ontology in OWL does not define the usage of itself
 - Proper documentation defines it, but what if it is missing or incomplete?

LODSight (visualization of ontology usage summary in a dataset) (OBM visual

Ontology Does Not Explicitly Define Its Proper Usage

Class hierarchy	Class hierarchy (i	nferred)	
Class hierarchy: Offering			
* 			
BusinessEntity			
BusinessEntityType			
BusinessFunction			
DayOfWeek			
DeliveryMethod			
■ Location = LocationOfSalesOrServiceProvis			
Offering			
OpeningHoursSpecification			
PaymentMethod			
	200000		P
Individuals by type Annotation property hierarchy Datatypes Object property hierarchy Data property hierarchy			
Object property hierarchy:			
manufacturer = hasManufacturer			
offers			
owns			
predecessorOf			
qualitativeProductOrServiceProperty			
quantitativeProductOrServiceProperty			
seeks 🔤			
successorOf			

 $\langle \Box \rangle$

company1 rdf:type gr:BusinessEntity . company1 gr:offers offer01 . offer01 rdf:type gr:Offering . offer01 gr:hasBusinessFunction gr:Sell .

Ontology Does Not Explicitly Define Its Proper Usage

- The usage can be learned-by-example from a dataset where the ontology is used
- Manual browsing of a dataset is too complicated and time consuming

Dataset Summary to Show Ontology Usage

- Based on visualizing frequent type-property paths
- With the possibility to show example instantiations

Related Research

- Ontology mapping also targets heterogeneity, but in a different way
- Meta-modeling for abstraction from modeling style diferences
 - Ontological Background Models (OBM)
 - OntoUML (Albuquerque and Guizzardi, 2013) not intended for ontology engineering
- Dataset summarization and visualization
 - Mainly knowledge pattern extraction (Presutti et al., 2011)

Preliminary Results

- Experiments with local coverage comparison in PURO Modeler (accepted paper for VISUAL workshop at EKAW)
- Preliminary experiments with LODSight dataset summarization using SPARQL

Future Work

- Guidelines for OBM design
- OBM-to-OWL transformation patterns and algorithm
- Visualization techniques for large OBMs and groups of related OBMs
- Visualization of type-property dataset summarization along with example instantiations
- ... (the PhD topic is a part of a larger project involving other researchers)

Thanks for your attention

• Questions?

- References:
 - Albuquerque, A., Guizzardi, G.: An ontological foundation for conceptual modeling datatypes based on semantic reference spaces. In Research Challenges in Information Science(RCIS), 2013 IEEE Seventh International Conference on (pp. 1-12).
 - Dudáš, M., Hanzal, T., Svátek, V.: What Can the Ontology Describe? Visualizing Local Coverage in PURO Modeler. In: VISUAL at EKAW'14, Linkoping, 2014.
 - Presutti, V., et al.: Extracting core knowledge from Linked Data. In: Proceedings of the Second Workshop on Consuming Linked Data, COLD 2011.
 - Svátek, V., et al.: Metamodeling-Based Coherence Checking of OWL Vocabulary Background Models. In: OWLED 2013.