Learning user preferences from user ratings in a web environment

Alan Eckhardt

Outline

- Motivation
- Input from the user
- Preference model learning
- Specific settings for preference learning
- Experiments
- Conclusion

Helping the user to find what she looks for E.g. notebooks

- A small amount of information required from the user
 Toshiba Portege R600 Toshiba's Portege R600 is one of the best ultraportables on the matter if usuits to pay the price
 - Ratings of notebooks,...
- Construction of a general user preference model
 - Each user has his/her own preference model
- Recommendation of the top k notebooks to the user
 - Which the preference model has chosen as the most preferred for the user

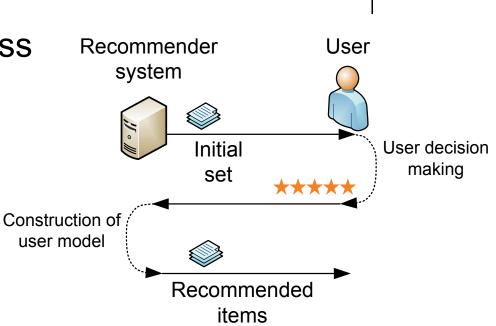
Motivation

Toshiba's Portege R600 is one of the best ultraportables on the market, if you're willing to pay the price. Tags: toshiba, portege, r600, ultraportable, laptop

Editor's rating: ••••••• 9.0 User rating: •••••• 7

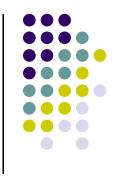
Motivation

- Recommendation process
- Initial set
 - Centers of clusters of objects
- Construction of user model
- Recommendation
- More iterations possible
 - In each iteration the user model is refined



Input from the user

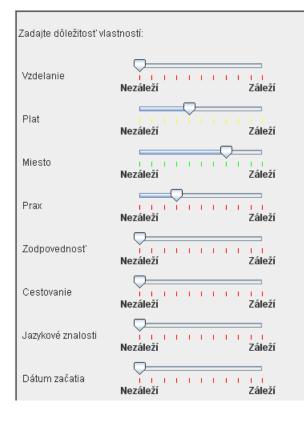
- Direct specification of preferences
 - User directly describes her preferences
 - Using a preference model
 - User has to know the preference model
 - Most difficult for the user



Direct specification of preferences

-Whär cost tildich-

Preferencie používateľa



rax	Nastavenie	Basic Intermediate Comprehensive Working Expert			 ♥ Čím viac, tým ♥ Čím menej, tý ♥ Stred ♥ Okraje 	
. Kam si	i přejete letět ?					
Prague Zvol Přílet do	- Ruzyne - (PRG) Ite město, do kterého c	borovnejte odlety z více hcete letět !	měst najednou	?	vyhledat letiště vyhledat letiště	Radius ? 0 km 0 km 50 km 100 km 150 km 200 km
Vyhledáv.	ání: ⓒ ±7 dní Ċ ±1 den ✔ pouze přímé lety	O ±3 dny O vzadaných dnech				
Preferenc	:e					_
Poža	-	na (+/- 7 dn 🔽	Třída:		nomickou třídi 💌	
Let společn	ecké Nejlevnější cer Nejlevnější cer Letový řád	na (+/- 7 dní) na (přesné datum)		požaduji ekon požaduji busir preferuji ekor	iomickou třídu ness třídu nomickou třídu	

preferuji business třídu

Input from user

- User behaviour
 - No user effort
 - Very noisy data, no explicit information, may contain very complex structure, different actions
 - Filtering the objects set by some attribute value, staying on a page with product details, clicking on a link to product details, clickstream, recommending product to someone, ...

Input from user

User ratings

• A widely use approach for expressing preferences

GOLDEN 5 AI (LÉTO07)					
	Anička <u>0891@seznam.cz</u> Vloženo: 11.2.2008				

		-
Hodnocení uživatele	2.0	00000
Splnilo očekávání	1.0	00000
Egypt	3.0	00000
Hurghada	3.0	00000
Ubytování	2.0	00000
Strava	2.0	000000
Služby CK	1.0	00000

obiednat 🕨 hodnotit 🕨

Na 5 hvězdičkový hotel je to katastrofa. Maximálně 3 hvězdy by mu bohatě stačili. Nejezdit!!!!

User preference model

- Content based
 - What user prefers
- Used to evaluate all objects
 - In order to get the top k
- Learned from the user evaluation of a small set of objects
- Notation
 - A₁,...,A_N attributes
 - r(o) rating of object o
 - $o_i i$ -th attribute value of o

Two step user model

- User model is divided into two steps
 - Local preferences normalisation of the attribute values of objects to their preference degrees

$$f_i: D_{A_i} \to [0,1]$$

Transforms the space ΠD_{A_i} into $[0,1]^N$

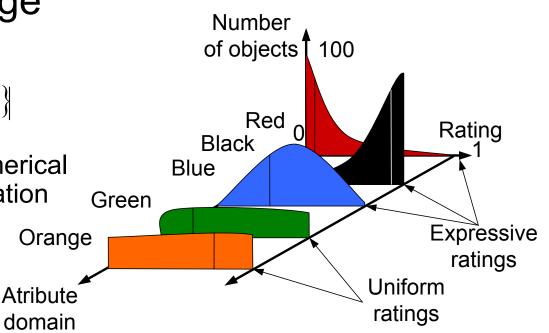
2. Global preferences - aggregation of preference degrees of attribute values into the predicted rating

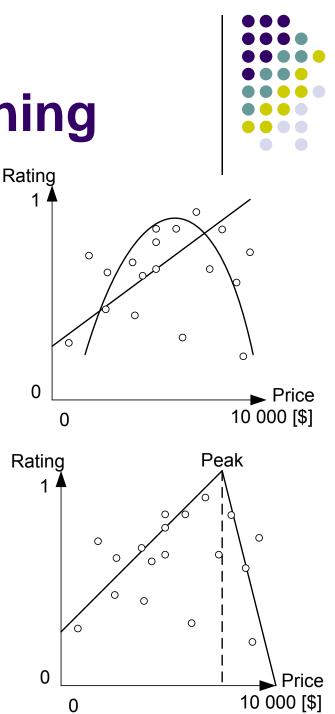
 $@: [0,1]^{\mathbb{N}} \rightarrow [0,1]$

- Nominal attributes
 - Examine distribution of the ratings of the objects with a particular attribute value
 - "ASUS notebooks"
 - Take the average
 - Or median,...

•
$$f_i(a) = \sum_{o \mid o_i = a} r(o) / |\{o \mid o_i = a\}|$$

 May be applied to numerical attributes via discretisation _G





- Numerical attributes
 - Linear regression
 - *f_i(x)=ax+b*
 - Quadratic regression
 - *f_i(x)=ax*²+bx+c
 - Peak
 - $f_1(x) = a_1 x + b_1$
 - $f_2(x) = a_2 x + b_2$
 - Peak is found by trying all values and taking the best option
 - Costly approach

Statistical

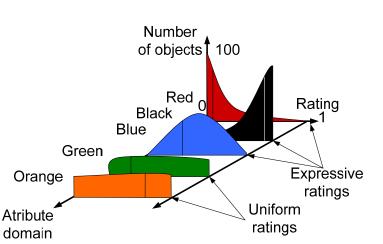
• Weighted average aggregation

$$(o) = \sum_{i=1,\dots,N} w_i f_i(o_i) / \sum_{i=1,\dots,N} w_i$$
$$w_i = \sum_{a \in A_i} 1 / \operatorname{var}(r(a)) / |A_i|$$

•
$$r(a) = \{r(o)|o_i=a\}$$

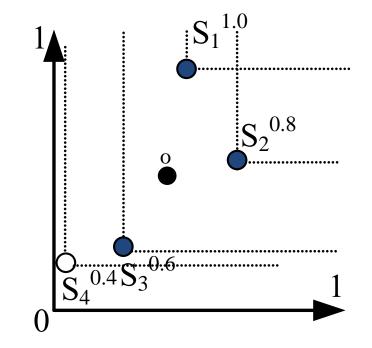
 ratings of objects having attribute value a

 $\begin{array}{l}
 @(MPix_U_1, Fast_U_1, Cheap_U_1) = \\
 \underline{5*MPix_U_1 + 1*Fast_U_1 + 3*Cheap_U_1} \\
 9
\end{array}$



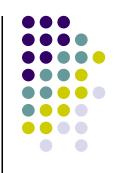
Instances

- Based on k-NN approach
- Use monotone space [0,1]^N
 - Notion of dominance
- Skyline
 - A set of incomparable objects, dominating o
 - or dominated by o
- (The lowest rating from the upper skyline + the highest rating from the lower skyline) / 2



Specific settings for preference learning

- Small training set
 - Users are not willing to rate too many objects
- Order is important
- Ratings on a discrete scale 1,...,5
- Only the best objects are of interest
 - Bad prediction for bad objects in not tragic
 - Bad prediction for good objects is much worse



Α	В	С
1	2	1
2	1	2
3	3	3
4	4	4
5	5	5
6	6	6
7	7	7
8	8	8
9	9	10
10	10	9

Specific settings for preference learning - Error measures

- RMSE
 - $RMSE(\hat{r}) = \sqrt{\sum_{o \in Test} (\hat{r}(o) r(o)^2) / |Test|}$
- Tau coefficient
 - similarity of two ordered lists au

$$=\frac{n_c-n_d}{1/2n(n-1)}$$

- count of non-reversed pairs
- Pearson correlation
 - captures linear dependence of two variables
- Build time
 - Time to build the classifier
- Test time
 - Time to evaluate objects from the test set

Specific settings for preference learning

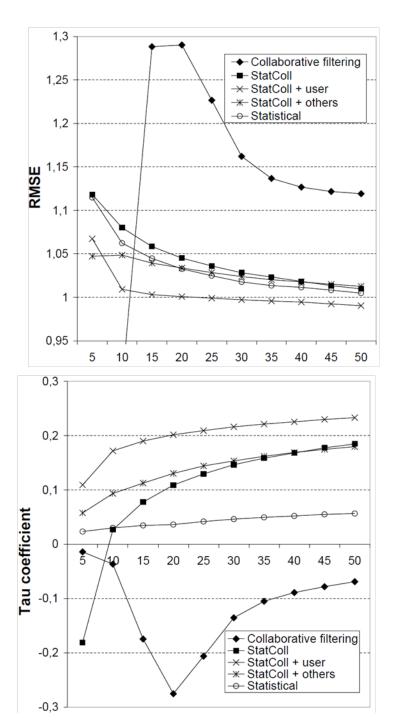
- F1 Score
 - Percentage of common top 20 object in method's and user's lists
- Weighted RMSE/Tau
 - Weighting the error with the user ratings
 - More attention to better objects
- Monotonicity violation
 - Reversed order of two objects 3 points, two equal objects made non-equal – 1 point
- Unpredicted objects count
 - Count of objects, which the method failed to evaluate

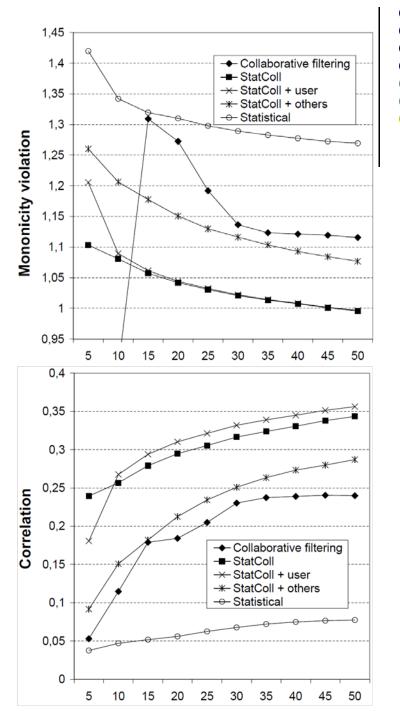
- Statistical for Collaborative filtering
- Local preferences as preprocessing for UTA method and for ILP

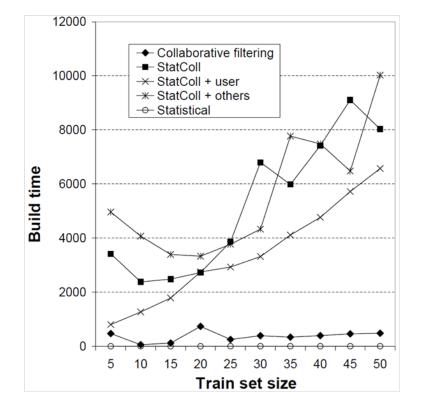
- Collaborative filtering
- Determining how user u evaluates object o
- Using how o was rated by other users
 - Similarity of users
 - Take into account only similar users' ratings
 - Users are similar, if they rated objects similarly
- Similarity of items
 - Take into account also the ratings of similar items
 - Objects are similar, if they were rated similarly by user u

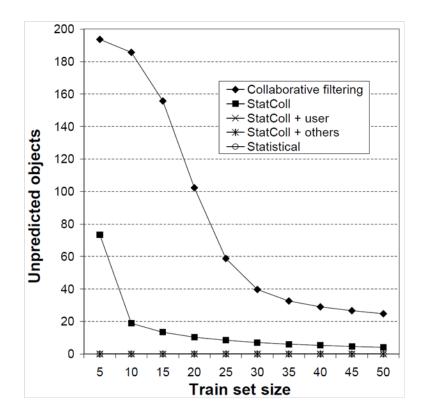
- Using similarity of preference models as distance for collaborative filtering
 - Linear = a^1x+b^1 , a^2x+b^2
 - $(3^*|a^1-a^2|+|b^1-b^2|)/4$ more weight to the slope
 - Nominal
 - r¹(a)-r²(a)
 - Aggregation weighted average
 - $|W_i^1 W_i^2|$

- Experiment settings
 - Netflix dataset, only 1000 users used
 - Each user had 200 ratings
 - 1-5 rating scale
 - Training set sizes 5-50
 - Standard collaborative filtering requires much more data – both users and ratings









Preprocessing for UTA

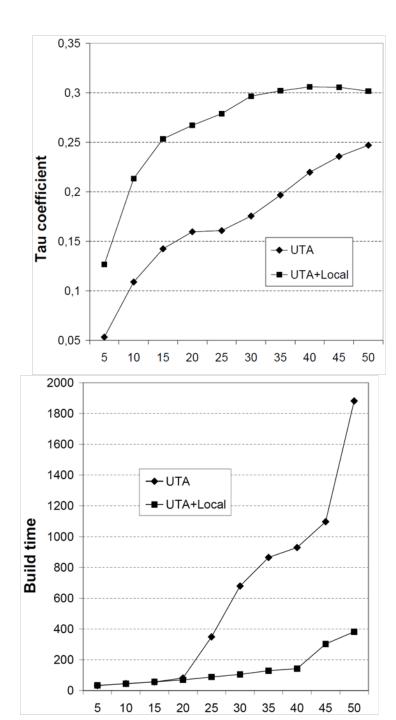
- UTA works with criteria
 - Attributes already sorted according to preference
- But real data are often not ordered
 - User would have to specify his preferences for attributes explicitly
 - Too much effort
 - Display size no perfect ordering for every user
- Using local preferences eases the effort of the user

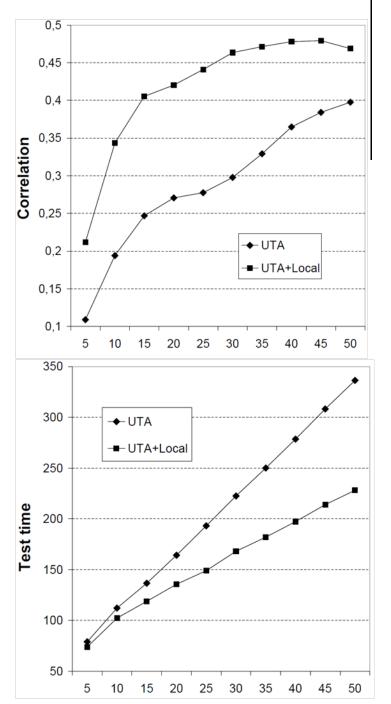
Preprocessing for UTA

- Implementation of Tomas Kliegr used
 - http://kliegreen.cz/uta/vw.html
 - Non monotonicity allowed in criteria
 - Possible changes of slope for a criterion set to 2
- First variant (UTA) trained on the data
- Second variant (UTA + local) trained on [0,1]^N monotone space

Preprocessing for UTA

- Experiment settings
 - UCI datasets for classification
 - with monotone class variable
 - transformed to 1-5 ratings
 - reduced to 200 objects
 - Artificial preferences on real data
 - Notebooks and autobazar
 - 5-50 training sets





Preprocessing for ILP

- Preprocessing for ILP
 - Inductive logic programming
 - Method for finding rules in complex data
 - Prolog programs used
 - Progol implementation was used
 - http://www.doc.ic.ac.uk/~shm/progol.html

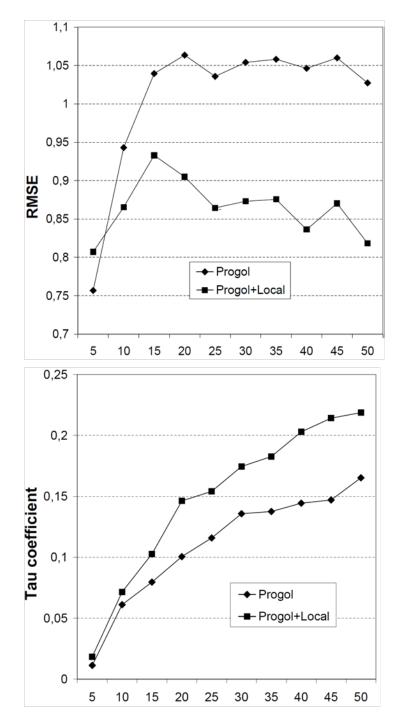
 A/\sim SNM/Progol.ntml owner(30, '1.0'). fuel(30, 'diesel'). ... rating(A,2) :- owner(A,2.0). rating(A,3) :- originplace(A,korea). rating(A,3) :- horsepowerkw(A,96.0). rating(A,3) :- horsepowerkw(A,103.0). rating(A,3) :- airbags(A,10.0). rating(A,4) :- bodywork(A,limuzina).

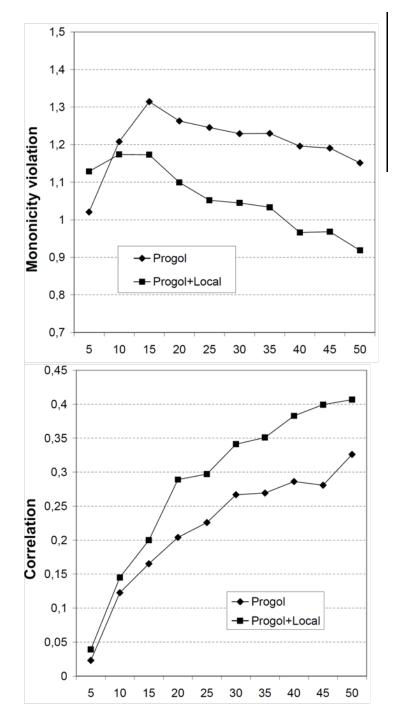
rating(A,4) :- doors(A,4), fuel(A,benzin), safetydrive(A,esp).

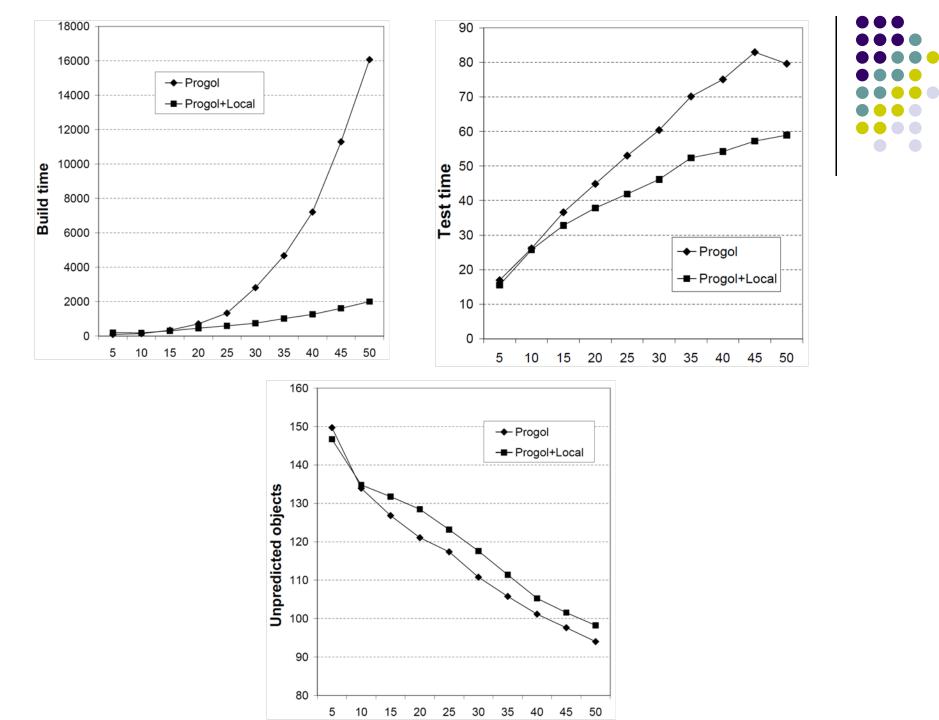
rating(30, '2'). make(30, 'renault'). bodywork(30, 'combi'). originplace(30, 'francuzsko'). originyear(30, '2003'). price(30, '264000.0'). crashed(30, 'nehavarovane'). runnedkm(30, '118000.0'). owner(30, '1.0'). fuel(30, 'diesel').

Preprocessing for ILP

- Same settings as for UTA
 - UCI datasets for classification
 - with monotone class variable
 - transformed to 1-5 ratings
 - reduced to 200 objects
 - Artificial preferences on real data
 - Notebooks and autobazar
 - 5-50 training sets







Conclusion

- Description of a preference model
 - Local preferences form monotone space [0,1]^N
 - Global preferences aggregates preference degrees of attribute values into the overall rating of the object
- Description of learning the model
 - Various procedures for local and global preferences
- Experiments
 - Using similarity of preference models for collaborative filtering
 - Using local preferences as preprocessing for UTA and ILP