

xs:complexType name="CategoryType"> <xs:sequence>

<xs:element name="description" type="xs:string" />
<xs:element name="category" type="CategoryType"</pre>

Evolution and Adaptability of Complex XML Applications

Talk for the KEG Seminar, Faculty of Informatics and Statistics, University of Economics, Prague (8.11.2012)

Irena Holubova (Mlynkova)

XML and Web Engineering Research Group Department of Software Engineering Faculty of Mathematics and Physics Charles University in Prague Czech Republic

Department of Software Engineering

Staff:

- 9 researchers
- 4 lecturers
- 20 PhD students

- 70 papers in refereed proceedings/journals
- 6 SW prototypes
- Research groups:
 - Similarity Retrieval Research Group
 - Web Semantization Research Group
 - XML and Web Engineering Research Group

XML and Web Engineering Research Group (XRG)

- Head: Prof. RNDr. Jaroslav Pokorny, CSc.
- Researchers:
 - RNDr. Irena Mlynkova, Ph.D.
 - Mgr. Martin Necasky, Ph.D.
 - doc. Ing. Karel Richta, CSc
- PhD students:
 - Mgr. Sobeslav Benda
 - RNDr. Jakub Klimek
 - RNDr. Tomas Knap
 - Mgr. Jakub Maly
 - Mgr. Marek Polak
 - Mgr. Jakub Starka
 - Mgr. Martin Svoboda

Overview of XRG Research Topics

- In general: various aspects of Web technologies
 - Originally (and primarily) XML technologies
 - Gradually extended with regard to current trends
- Current areas:
 - Modelling of XML applications and systems
 - Evolution and change management of applications
 - Inference of XML schemas
 - Similarity of XML data
 - Statistical analysis of real-world data
 - Linked Data, graph databases
 - Data provenance
- Older (but <u>not</u> obsolete) topics:
 - XML benchmarking
 - Storage strategies for XML data

Evolution of XML Applications

- XML application = an application that utilizes XML technologies
 - XML data, XML schemas, XML queries, XSLT scripts, ...
- Evolution of application
 - User requirements or surrounding environment changes
 the application needs to adapt accordingly
 - Key problem: changes in data structures
 - Many related issues to be solved

Let us see them...

Preliminary Approaches

- Separate issues, simple use cases
 - An XML application can be much complex

XML System of Applications

- An XML application usually involves a family of XML schemas
 - Each involved in particular execution part
 - Example: a set of web services
 - => XML system of applications
- Schemas are related, overlap, exploit each other, ...
- Problems:
 - The amount of schemas can be high
 - Tens, hundreds, ...
 - A change in a single schema may need to be propagated to numerous other schemas
 - => Difficult, error-prone, ...

Simple Example

Common problem domain: purchasing goods

```
<custList version="1.3">
<cust>
 <name>Martin Necasky</name>
<address>Vaclavske nam. 123, Prague</
address>
<phone>123 456 789</phone>
</cust>
<cust>
 <name>Department of Software Engineering,
  Charles University</name>
 <hq>Malostranske nam. 25, Prague</hq>
 <storage>Ke Karlovu 3, Prague</storage>
 <secretary>Ke Karlovu 5, Prague</secretary>
 <phone>111 222 333</phone>
</cust>
</custList>
               List of customers
```

```
<pur><purchaseRQ version="1.0">
<cust>
<name>Department of Software Engineering,
 Charles University</name>
<code>ksi@mff.cuni.cz</code>
<br/><bill-to>Malostranske 25, Prague</bill-to>
<ship-to>Ke Karlovu 3, Prague</ship-to>
</cust>
<items>
<item>
 <code>P045</code><price>17</price>
</item>
<item>
 <code>P332</code><price>34</price>
</item>
</items>
</purchaseRQ> Purchase requests
```

And other schemas

Customer details, purchase responses, purchase transport details, ...

Example

- The same part of the domain may be represented in different XML schemas in different ways
- Example: Customer
 - In purchase request:
 - name + code, bill-to + ship-to address
 - In list of customers:
 - Private customers: name, address, phone
 - Corporate customers: name, different addresses (headquarters, storage, secretary, ...), phone
- New user requirement: Address is not a simple string, but should be divided into street, city, zip code, ...

Example

- We need to:
 - Find all the addresses in all the schemas
 - Correctly modify their structure
 - Correctly propagate the modification to all respective documents
 - (and operations, storage strategies, source codes, ...)
- The situation can be even more complicated...
 - E.g. We may want to change only addresses that represent a place to ship the goods, not all addresses
 - i.e. not, e.g., the address of the headquarters

And what if we have hundreds of XML schemas?

More Complex Example: OpenTravel.org

- Standard for communication in travel industry
- Currently: 319 XML schemas
- Evolution:
 - Changed twice a year

- Changes are published in the form of a new version of XML schemas + documentation of the changes in a form of human-readable document
- Solution: Preserving backward compatibility as much as possible
 - 7,5% on average within years 2003 2010
 - Consequence: artificial data structures, plenty of optional items, obsolete data structures, ...

Our Solution

Necasky, M. - Mlynkova, I.: On Different Perspectives of XML Schema Evolution. FlexDBIST '09 workshop of DEXA '09, pages 422 - 426, Linz, Austria, September 2009. IEEE Computer Society Press, 2009.

Five-Level XML Evolution Framework

- Based on the MDA principle
 - Idea: modelling of problem domain at different levels of abstraction

Levels:

- Extensional level XML documents
- Operational level XML queries
- Schema level XML schemas
- Platform-independent level conceptual model of the whole problem domain
 - e.g. purchasing goods
- Platform-specific level mapping of the problem domain to particular XML formats
 - e.g. list of customers, purchase requests, ...

Platform-Independent Model (PIM)

- Models real-world concepts + relationships among them
- Simplified UML class diagram
 - Classes, attributes + data types, binary associations + cardinalities
 - (+ inheritance + ...)

Platform-Specific Model (PSM)

- How part of reality modelled by PIM is represented in an XML schema
 - "Glue" between PIM and XML schemas
- UML class diagrams extended for the purposes of XML modelling
 - Hierarchical structure, order, XML elements vs. attributes, ...
 - XSEM model

Necasky, M.: Conceptual Modeling for XML. In Dissertations in Database and Information Systems Series, Volume 99. IOS Press/AKA Verlag. January 2009, 164pp. ISBN: 978-58603-956-1.

XML PSM diagram n

Two Perspectives of PSM

Conceptual:

- Classes, attributes and associations of PSM are mapped to components of PIM
- The mapping specifies the <u>semantics</u> of PSM schema in terms of PIM schema

Grammatical:

- A PSM schema models an XML format = an XML schema = a regular tree grammar
- A regular tree grammar can be translated to a PSM schema and vice versa
 - Multiple possible translations from PSM to XML schema

How the Evolution Process Works?

But there are many related problems to be solved...

"Background" Issues

- Correct definition of PIM and PSM models
- Correct definition of mapping between the levels
- Definition of edit operations at each level
 - Atomic vs. composite
- Correct definition of propagation of each operation to neighbouring levels

In related literature mostly omitted or solved partially,

or without the general context...

Even More "Background" Issues

- Forward vs. reverse engineering
 - Inference of XML schemas
 - Translation of XML schemas to PSM
 - Mapping of PSM to PIM

Formal Definition of Models and Mapping

- Algorithm for translating PSM to regular tree grammars and vice versa
 - Proof of correctness and expressive power

- Definition of interpretation = formal definition of mapping between conceptual levels
 - Proof of correctness

Necasky, M. - Mlynkova I. - Klimek, J. - Maly, J.: When Conceptual Model Meets Grammar: A Dual Approach to XML Data Modeling. International Journal on Data & Knowledge Engineering, volume 72, pages 1 - 30. Elsevier, February 2012.

Edit Operations and Their Propagation

- Definition of a set of atomic operations at PSM and PIM levels
 - Pre- and postconditions that must be fulfilled
 - Proof of minimality, correctness

- Specification of propagation mechanism
 - Proof of correctness
- Definition of composition of edit operations
 - More user-friendly operations

Necasky, M. - Klimek, J. - Maly, J. - Mlynkova, I.: Evolution and Change Management of XML-based Systems. Journal of Systems and Software, volume 85, issue 3, pages 683–707. Elsevier, February 2012.

Our Edit Operations

- Creation, update, removal classical operations
- New atomic operation: synchronization
 - Two sets of schema components are semantically equivalent
- Idea:
 - Requirement: Address is not a simple string, but should be divided into street, city, zip code, ...
 - Existing approaches: creating new attributes + removing the old one
 - => loss of information (data)
 - Our approach: synchronization
 - => the propagation mechanism knows where to "get" data

Re-Validation of XML Documents

- PSM diagram = XML schema changes => XML documents need to be adapted
 - Re-validation (XSLT) scripts
- Approaches:
 - Recording changes
 - Schema comparison
- New concept: version links

Propagation to Operational Level

Schema evolves => query inconsistency

 We need: a model of queries, a mapping between data and queries, edit operations, propagation mechanism, ...

Propagation to Operational Level

- So far we have considered only data levels
- Query inconsistency
 - Returning error (e.g. non-existing element), more/less results, completely different data
- Current approaches: a single paper describing rules for backward compatible queries
 - Artificial
 - Cannot be used in every case
 - Imprecise for various applications
- Our current work: extension of the evolution framework with propagation to operational level
 - First step: subset of XPath queries, study of impact of particular atomic operations

Modelling Strategies

- Top-Down (forward engineering) modelling a new system (or its modification)
 - Creating PIM schema
 - Creating a PSM schema from PIM
 - Or its modification
 - Translating PSM schema to XML schema
- Bottom-Up (reverse engineering) an existing system + integration of an existing XML schema
 - If we do not have a schema, we need an inference method
 - 2. Translating XML schema to PSM
 - Straightforward thanks to the previous results
 - 3. Mapping of PSM schema to and PIM schema
 - We need a suitable similarity measure

Reverse Engineering: Inference of XML Schemas

- Real-world XML data:
 - 52% of randomly crawled / 7.4% of semiautomatically collected have no schema at all
- But we need a schema to be integrated into the system

A General Schema of the Inference Process

```
<custList>
  <cust>
  <name>Department</name>
  <tel>111-222-444</tel>
  <tel>222-333-444</tel>
  <tel>111-444-333</tel>
  <tel>111-222-555</tel>
  </cust>
  ...
  </custList>
```

<custList>
<cust>
<fname>Martin</sname>
<sname>Necasky</sname>
<tel>666-444-333</tel>
<tel>666-444-222</tel>
</cust>
...
</custList>

Inference of XML Schema from XML Documents

- Input: a set of XML documents
- Output: an XML schema against which the documents are valid
- Gold's theorem: regular languages are not identifiable from positive examples
 - regular language = XML schema
 - positive example = XML documents which should conform to the resulting schema
- Currently:
 - Heuristic approaches vs. grammar-based approaches
 - Exploit purely XML documents
- Our proposals:
 - Other input data
 - Obsolete schema, queries, user interaction, ...
 - Other output information
 - XSD constructs, integrity constraints, ...
 - Optimization of the inference process

Mlynkova, I. - Necasky, M.: Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues. Informatica. IOS Press, 2012. ISSN 0868-4952. (In Press.)

jlnfer

- A framework for XML schema inference
- Based on the idea of plug-ins
 - Modules
 - Can be added, removed, replaced, compared, ...
- "Playground" for proposing new inference methods
 - "Not interesting" features are implemented
 - Transforming XML data to grammar rules
 - Transforming automata to XML schemas
 - ...
 - Current know approaches are implemented
 - New ones can be compared

Reverse Engineering: Mapping of PSM to PIM

Top-down:

 User directly provides the mapping denoting parts of PIM to be interpreted in PSM

Bottom-up:

- More complex
- We need to "find" the mapping

Starka, J. - Mlynkova, I. - Klimek, J. - Necasky, M.: Integration of Web Service Interfaces via Decision Trees. IIT '11, pages 47-52, Abu Dhabi, United Arab Emirates, April 2011. IEEE Computer Society, 2011.

Wojnar, A. - Mlynkova, I. - Dokulil, J.: Structural and Semantic Aspects of Similarity of Document Type Definitions and XML Schemas. Journal on Information Sciences, volume 180, issue 10, pages 1817 - 1836. Elsevier, May 2010.

Mapping of PSM Schema to PIM

- Input: a PIM schema and a PSM schema
- Output: correct mapping between PIM ad PSM
 - Correct interpretation
- Currently there exists a huge amount of mapping strategies
 - Analyze structure, context, semantics, operations, ...
- Our case: <u>semi-automatic</u>
 - But we can help the user with automatic parts
- Aims:
 - To adapt verified techniques to given application
 - Decision trees
 - To minimize user interaction
 - Exploitation previous results

Summary

- We have solved the problem of evolution of complex XML applications - we have defined:
 - Five-level framework
 - All the levels + mutual mapping
 - Operations at levels
 - Atomic + composite
 - Propagation of operations to other levels
 - Building the system from both directions
 - Top-down + bottom-up

We Can Go Further...

- An XML system can contain other than XML data => the ideas can be generalized
 - Relational models, UML models, ...
 - Business process models

Related Work

- Particular cases and views of the problem have previously only been solved separately
 - Sometimes just superficial, imprecise description
 - No theoretical or formal basis

Implementations

- XCase (http://xcase.codeplex.com/)
 - Implementation of first ideas
 - Desktop application
 - XML data levels and propagation among them
- eXolutio (http://exolutio.com/)
 - Web application of XCase
 - Automatic generation of mappings between PIM and PSM
- DaemonX (<u>http://daemonx.codeplex.com/</u>)
 - A general framework for any kind of data (not only XML)
 - New data format => new plug-in
 - Currently: XML, relational, UML

Future Work

- Adding more complex conceptual-modelling constructs
 - E.g. inheritance
- Queries,
 - Modelling, propagation, ...
- Integrity constraints (at all the levels)
 - Modelling, propagation, ...
- Extension to other data formats
 - Formal specification, proofs of correctness, ...
- Storage strategies
 - New dimension: schema evolves => storage strategy should be optimized
- Extension to business process models
 - New dimension: not data structures, but "what happens with them"

Thank you very much for your attention

