Contextual Representation and Reasoning with Description Logics

Loris Bozzato, ${ }^{1}$ Francesco Corcoglionitti, ${ }^{1}$ Martin Homola, ${ }^{1,2}$
Mathew Joseph, ${ }^{1}$ Luciano Serafini, ${ }^{1}$ Andrei Tamilin ${ }^{1}$
${ }^{1}$ Fondazione Bruno Kessler, Trento, Italy
${ }^{2}$ Comenius University, Bratislava, Slovakia

Motivation

- Information on the SW is valid w.r.t. some assumed context

Motivation

- Information on the SW is valid w.r.t. some assumed context

Motivation

- Information on the Web is valid w.r.t. some assumed context

Motivation

- Information is valid w.r.t. some assumed context

MATCHES

Presented by
Emirates

Group stage	Stage 2	Calendar

Cape Town－Green Point Stadium

Summary

Italy and Paraguay share
spoils
Italy opened their FIFA World Cup ${ }^{\text {m }}$ defence with a come－from－behind 1－1 draw in Group F against Paraguay on a rainy Monday night in Cape Town．

FIFA．com＇s Focus
目 Italy meet their match
回 Honda creates history for Japan
目 Danes no match for Dutch
，＊nominis nornoct
Fombuesere Man of the Match

ED HYunaal Fan Photo

The Fan of the Tournament vote is now closed．
Ched back soon to
find out which fan
is the lucky winner
of a brand new
of a brand new
Hyundai i10！
More＂

Statistics		
$\mathbf{4}$ Italy		Paraguay
$\mathbf{1 0}$	Shots	$\mathbf{8}$
$\mathbf{8}$	Comer kicks	$\mathbf{4}$
$\mathbf{1}$	Yellow cards	
$\mathbf{0}$	Second yellow card and red card	$\mathbf{1}$
$\mathbf{0}$	Red Cards	$\mathbf{0}$
$\mathbf{5 2 \%}$	Possession（\％）	$\mathbf{0} \%$

Logic of Context (McCarthy 1993)

- If context of formulae ϕ and ψ is different: introduce context identifiers c_{1}, c_{2}, \ldots and special predicate ist/2
use $\operatorname{ist}\left(c_{1}, \phi\right)$ and $\operatorname{ist}\left(c_{2}, \psi\right)$

Logic of Context (McCarthy 1993)

- If context of formulae ϕ and ψ is different: introduce context identifiers c_{1}, c_{2}, \ldots
and special predicate ist/2
use $\operatorname{ist}\left(c_{1}, \phi\right)$ and $\operatorname{ist}\left(c_{2}, \psi\right)$
- statement holds within a context: ist $\left(c_{1}\right.$, Winner (Spain $\left.)\right)$, ist $\left(c_{2}\right.$, Winner (Italy $\left.)\right)$

Logic of Context (McCarthy 1993)

- If context of formulae ϕ and ψ is different: introduce context identifiers c_{1}, c_{2}, \ldots
and special predicate ist/2
use $\operatorname{ist}\left(c_{1}, \phi\right)$ and $\operatorname{ist}\left(c_{2}, \psi\right)$
- statement holds within a context: $\operatorname{ist}\left(c_{1}\right.$, Winner $($ Spain $\left.)\right)$, ist $\left(c_{2}\right.$, Winner (Italy $\left.)\right)$
- knowledge lifting:
$\forall x$ ist $\left(c_{1}\right.$, Winner $\left.(x)\right) \rightarrow \operatorname{ist}\left(c_{2}\right.$, Team $\left.(x)\right)$

Context as a Box (Benerecetti et al. 2000)

Dimensional Space (CYC, Lenat 1998)

- Context can be organized in dimensional space
- W.r.t. narrower-broader relation

CKR: Objectives

- Tailor the logic of context for SW
- Reasoning tasks: subsumption, entailment, query answering
- Develop a tractable version
- Implement a working prototype
- Evaluate rep. power \& performance

Preliminaries: Description Logics

- Language
- Individuals a, b, \ldots
- Concepts $A, B, C \ldots$
- Roles R, S, \ldots
- Complex concepts
- $C::=A|\neg C| C \sqcap D|C \sqcup D| \exists R . C \mid \forall R . C$
- $\mathrm{KB} \mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$ contains axioms:
- Subsumption $C \sqsubseteq D$
- Class assertions $C(a)$
- Role assertions $R(a, b)$

Preliminaries: Description Logics

- Language
- Individuals a, b, \ldots
- Concepts $A, B, C \ldots$
- Roles R, S, \ldots
- Complex concepts
- $C::=A|\neg C| C \sqcap D|C \sqcup D| \exists R . C \mid \forall R . C$
- $\mathrm{KB} \mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$ contains axioms:
- Subsumption $C \sqsubseteq D$
- Class assertions $C(a)$
- Role assertions $R(a, b)$

Preliminaries: Semantics

Interpretation $\mathcal{I}=\left\langle\Delta^{\mathcal{I}},,^{\mathcal{I}}\right\rangle, \Delta^{\mathcal{I}} \neq \emptyset$

$\neg C$	$\Delta^{\mathcal{I}} \backslash C^{\mathcal{I}}$
$C \sqcap D$	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$
$C \sqcup D$	$C^{\mathcal{I}} \cup D^{\mathcal{I}}$
$\exists R . C$	$\left\{x \in \Delta^{\mathcal{I}} \mid \exists y \in \Delta^{\mathcal{I}}\langle x, y\rangle \in R^{\mathcal{I}} \wedge y \in C^{\mathcal{I}}\right\}$
$\forall R . C$	$\left\{x \in \Delta^{\mathcal{I}} \mid \forall y \in \Delta^{\mathcal{I}}\langle x, y\rangle \in R^{\mathcal{I}} \Longrightarrow y \in C^{\mathcal{I}}\right\}$
$C \sqsubseteq D$	$C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
$C(a)$	$a^{\mathcal{I}} \in C^{\mathcal{I}}$
$R(a, b)$	$\left\langle a^{\mathcal{I}}, b^{\mathcal{I}}\right\rangle \in R^{\mathcal{I}}$

- \mathcal{I} is a model of \mathcal{K} iff $\mathcal{I} \models \phi$ for all $\phi \in \mathcal{T} \cup \mathcal{A}$
- $\mathcal{K} \vDash C$ iff $C^{\mathcal{I}} \neq \emptyset$ in some model of \mathcal{K}
- $\mathcal{K} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all models of \mathcal{K}

Syntax: Contexts

world, sports, anytime

world, footbal, 2010

world, ice_hockey, 2010

world, FIFA_WC, 2010

world, IHWC, 2010

Syntax: Contexts

world, sports, anytime

world, footbal, 2010

world, ice_hockey, 2010

world, IHWC, 2010
Italy, NFL, 2010
$\mathcal{S R O I Q}$ \square

Syntax: Contexts

world, sports, anytime

world, footbal, 2010

world, ice_hockey, 2010

world, IHWC, 2010

Syntax: Meta-knowledge

Syntax: Meta-knowledge

- context IDs

Syntax: Meta-knowledge

- context IDs
- dimensional values location $\left(\mathcal{C}_{1}\right.$, Italy $)$

location:=Italy

Syntax: Meta-knowledge

- context IDs
- dimensional values location (\mathcal{C}_{1}, Italy) topic ($\left.\mathcal{C}_{1}, \mathrm{NFL}\right)$ time $\left(\mathcal{C}_{1}, 2010\right)$

Syntax: Meta-knowledge

- context IDs
- dimensional values location (\mathcal{C}_{1}, Italy) topic ($\left.\mathcal{C}_{1}, \mathrm{NFL}\right)$ time $\left(\mathcal{C}_{1}, 2010\right)$
- dimensional vectors

Syntax: Meta-knowledge

- context IDs
- dimensional values location(\mathcal{C}_{1}, Italy) topic ($\left.\mathcal{C}_{1}, \mathrm{NFL}\right)$ time $\left(\mathcal{C}_{1}, 2010\right)$
- dimensional vectors

Syntax: Meta-knowledge

- context IDs
- dimensional values location(\mathcal{C}_{1}, Italy) topic ($\left.\mathcal{C}_{1}, \mathrm{NFL}\right)$ time $\left(\mathcal{C}_{1}, 2010\right)$
- dimensional vectors

Syntax: Meta-knowledge

Italy, NFL, 2010

- context IDs
- dimensional values location $\left(\mathcal{C}_{1}\right.$, Italy $)$ topic ($\left.\mathcal{C}_{1}, \mathrm{NFL}\right)$ time $\left(\mathcal{C}_{1}, 2010\right)$
- dimensional vectors
- dimensional coverage

Italy \prec World FIFA_WC \prec football football \prec sports

Syntax: Meta-knowledge

- context IDs
- dimensional values location $\left(\mathcal{C}_{1}\right.$, Italy $)$ topic ($\left.\mathcal{C}_{1}, \mathrm{NFL}\right)$ time $\left(\mathcal{C}_{1}, 2010\right)$
- dimensional vectors
- dimensional coverage

Italy \prec World FIFA_WC \prec football football \prec sports

Hierarchy of Contexts

Syntax: Inside Contexts

- Locality of knowledge

Syntax: Inside Contexts

- Locality of knowledge
- Context/roles X have independent meaning in different contexts

Syntax: Inside Contexts

- Locality of knowledge
- Context/roles X have independent meaning in different contexts
- Qualified symbols: refer to entities from different context

Syntax: Inside Contexts

- Locality of knowledge
- Context/roles X have independent meaning in different contexts
- Qualified symbols: refer to entities from different context
- new symbol $X_{A_{i_{1}}:=d_{1}, \ldots, A_{i_{n}}:=d_{n}}$

Syntax: Inside Contexts

- Locality of knowledge
- Context/roles X have independent meaning in different contexts
- Qualified symbols: refer to entities from different context
- new symbol $X_{A_{i_{1}}:=d_{1}, \ldots, A_{i_{n}}:=d_{n}}$
- for all concept/role X
- for all dimensional vectors $A_{i_{1}}:=d_{1}, \ldots, A_{i_{n}}:=d_{n}$

Syntax: Qualified Symbols

- Example usage:
world, FIFA_WC, 2010
Team \sqsubseteq NationalTeam world,football, $2010^{\text {M MenTeam }}$ world,football, 2010 Team(Team_Italy)
Team(Team_Paraguay)
Referee(Benito_Archundia) has_coach(Team_Italy, Marcello_Lippi)

Syntax: Qualified Symbols

- Example usage:
world, FIFA_WC, 2010
Team \sqsubseteq NationalTeam football $^{\square}$ MenTeam $_{\text {football }}$
Team(Team_Italy)
Team(Team_Paraguay)
Referee(Benito_Archundia)
has_coach(Team_Italy, Marcello_Lippi)

Syntax: Qualified Symbols

- Example usage:
world, FIFA_WC, 2010

```
    Team \sqsubseteq NationalTeamfootball }\sqcap\mp@subsup{M}{\mathrm{ MenTeammootball}}{
    Team(Team_Italy)
    Team(Team_Paraguay)
    Referee(Benito_Archundia)
    has_coach(Team_Italy, Marcello_Lippi)
    plays_for(Daniele_Derossi, Team_Italy)
    plays_for ltaly,NFL
plays_for(Nelson_Valdez,Team_Paraguay)
plays_forGermany,NFL
```


CKR: Semantics

$$
\mathfrak{I}=\left\{\mathcal{I}_{\mathbf{d}}\right\}_{\mathcal{C}_{\mathbf{d}} \in \mathfrak{K}} \quad \Delta_{\mathbf{d}} \subseteq \Delta_{\mathbf{e}} \text { if } \mathbf{d} \prec \mathbf{e}
$$

1. $\left(\top_{\mathbf{d}}\right)^{\mathcal{I}_{f}} \subseteq\left(\top_{e}\right)^{\mathcal{I}_{f}}$ if $\mathbf{d} \prec \mathbf{e}$
2. $\left(A_{\mathbf{f}}\right)^{\mathcal{I}_{\mathrm{d}}} \subseteq\left(T_{\mathbf{f}}\right)^{\mathcal{I}_{\mathrm{d}}}$
3. $\left(R_{\mathbf{f}}\right)^{\mathcal{I}_{\mathbf{d}}} \subseteq\left(\top_{\mathbf{f}}\right)^{\mathcal{I}_{\mathbf{d}}} \times\left(\top_{\mathbf{f}}\right)^{\mathcal{I}_{\mathbf{d}}}$
4. $a^{\mathcal{I}_{\mathrm{d}}}=a^{\mathcal{I}_{\mathrm{e}}}$, given $\mathbf{d} \prec \mathbf{e}$, either if $a^{\mathcal{I}_{\mathrm{d}}}$ is defined, or if $a^{\mathcal{I}_{e}}$ is defined and $a^{\mathcal{I}_{e}} \in \Delta_{\mathrm{d}}$
5. $\left(X_{\mathbf{d}_{\mathrm{B}}}\right)^{\mathcal{I}_{\mathrm{e}}}=\left(X_{\mathrm{d}_{\mathrm{B}}+\mathrm{e}}\right)^{\mathcal{I}_{\mathrm{e}}}$
6. $\left(X_{\mathbf{d}}\right)^{\mathcal{I}_{\mathrm{e}}}=\left(X_{\mathbf{d}}\right)^{\mathcal{I}_{\mathrm{d}}}$ if $\mathbf{d} \prec \mathbf{e}$
7. $\left(A_{\mathbf{f}}\right)^{\mathcal{I}_{\mathbf{d}}}=\left(A_{\mathbf{f}}\right)^{\mathcal{I}_{\mathbf{e}}} \cap \Delta_{\mathbf{d}}$ if $\mathbf{d} \prec \mathbf{e}$
8. $\left(R_{\mathbf{f}}\right)^{\mathcal{I}_{\mathrm{d}}}=\left(R_{\mathbf{f}}\right)^{\mathcal{I}_{\mathrm{e}}} \cap\left(\Delta_{\mathbf{d}} \times \Delta_{\mathbf{d}}\right)$ if $\mathbf{d} \prec \mathbf{e}$
9. $\mathcal{I}_{\mathbf{d}}=\mathrm{K}\left(\mathcal{C}_{\mathbf{d}}\right)$

Characterization: Embedding @d

Characterization: Embedding @d

Characterization: Embedding @d

Characterization: Embedding @d

- $(C \sqsubseteq D) @ \mathbf{d}=C @ \mathbf{d} \sqsubseteq D @ \mathbf{d}$

Characterization: Embedding @d

Characterization: Embedding @d

Characterization: Embedding @d

Properties: Knowledge Propagation over Common Super-context

Properties: Knowledge Propagation over Common

Super-context

Properties: Knowledge Propagation over Common

Super-context

Properties: Knowledge Propagation over Common

Super-context

Properties: Knowledge Propagation over Common

 Super-context

Properties: Knowledge Propagation over Common

 Sub-context

Properties: Knowledge Propagation over Common

Sub-context

Reasoning in CKR

- DL-based CKR tableaux algorithm
- OWL RL-base CKR tractable forward chaining

$\mathcal{A L C}$ Tableau Algorithm

$$
\forall R . \neg C \sqcap(\exists R . C \sqcup \exists R . D)
$$

$\mathcal{A L C}$ Tableau Algorithm

$$
\forall R . \neg C \sqcap(\exists R . C \sqcup \exists R . D)
$$

$\mathcal{A L C}$ Tableau Algorithm

$\forall R . \neg C \sqcap(\exists R . C \sqcup \exists R . D)$
$\forall R . \neg C, \exists R . C \sqcup \exists R . D$

$\mathcal{A L C}$ Tableau Algorithm

$$
\begin{aligned}
& \forall R . \neg C \sqcap(\exists R . C \sqcup \exists R . D) \\
& \forall R . \neg C, \exists R . C \sqcup \exists R . D \\
& \exists R . C \\
& \text { • }
\end{aligned}
$$

$\mathcal{A L C}$ Tableau Algorithm

$\mathcal{A L C}$-based CKR Tableau Algorithm

OWL 2 RL-based CKR Tableau Algorithm

- Forward chaining algorithm
- Extends OWL RL algorithm by a number of rules

$$
\begin{aligned}
& \mathbf{h}:\left(\operatorname{ardf}: \operatorname{type} C_{\mathbf{d}}\right) \\
& \mathbf{g} \preceq \mathbf{h} \\
& \text { presentIn }(\mathbf{g}, a)
\end{aligned} \quad \Longrightarrow \quad \mathbf{g}:\left(a \operatorname{rdf}: \operatorname{type} C_{\mathbf{d}}\right)
$$

Implementation

- Implementation for OWL 2 RL fragment
- Implemented over Sesame RDF data store
- Contexts implemented as named graphs
- Propagation rules implement CKR semantics
- Contextualized queries

Use Case

- How can one model with this thing?
- How does it perform?

Use Case

- How can one model with this thing?
- How does it perform?
- FIFA World Cup domain
- Suitable for contextualization
- One edition ~ 50 contexts

Use Case

- How can one model with this thing?
- How does it perform?
- FIFA World Cup domain
- Suitable for contextualization
- One edition ~ 50 contexts
- Compare w flat RDF model
- Evaluate query execution times
- See:
https://dkm.fbk.eu/images/4/4a/TR-FBK-DKM-2011-3.pdf

Contextualized Queries

- Contextualized extension of SPARQL
- See:
https://dkm.fbk.eu/images/2/2a/TR-FBK-DKM-2011-2.pdf

Summary: Reasoning \& Complexity

	OWL 2 RL	$\mathcal{A L C}$	$\mathcal{S R O I Q}$
Reasoning	forward	tableaux	reduction
Complexity	PTime	ExPTiME	2NEXPTiME
Implementation	Yes	-	-
Querying	Yes	-	-

Conclusion

- Contextualization is a demanding task for SW
- CKR offers a viable solution
- Supports OWL 2 or any of its fragment
- Tableau and tractable reasoning
- Invariant complexity
- Implementation
- Contextualized queries

