

Robust Classifiers in Multivariate Statistics and Machine Learning

Jan Kalina

Institute of Computer Science CAS & Institute of Information Theory and Automation CAS

Example: Credit approval

- Cases: clients
- Variables: personal information about credit cards and proprietors
 - Continuous
 - Categorial
- Aims:
 - Classification to two groups
 - Probability of belonging to a given group
- Logistic regression model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \cdots + \beta_p X_{ip}, \quad i = 1, \dots, n$$

Possibly a large number of variables

Example: Cardiovascular genetic study

Center of Biomedical Informatics (2006–2011, prof. Zvárová)

Aim of the study:

Diagnostics of cardiovascular diseases.

Individuals (Municipal Hospital in Čáslav):

- Acute myocardial infarction (n = 98)
- 2 Cerebrovascular stroke (n = 46)
- \odot Controls (n = 169)

Design:

Paired design based on risk factors (age, sex, hypertension, smoking).

Data:

Personal data. Clinical and biochemical measurements. Gene expressions across the whole genome from a sample of peripheral blood.

Example: Cardiovascular genetic study

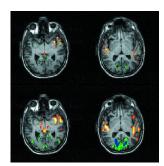
Table of gene expression values:

		24 patients with stroke				24 control persons			
	Gene	# 1	#2		#24	# 1	#2		#24
1	ADORA3	5.82	6.04		5.99	5.71	6.12		6.09
2	CPD	3.53	4.08		2.32	4.21	5.01		4.66
3	ECHDC3	2.50	2.71		3.17	2.99	3.52		3.01
4	VNN3	3.38	3.03		4.59	4.56	3.98		4.70
5	IL18RAP	4.03	4.91		5.81	5.12	5.01		5.23
6	ERLIN1	5.76	4.38		4.90	6.49	5.02		6.18
:	:	:	:	٠	:	:	:	٠	:
38 590	PHACTR1	5.21	4.99	• • •	5.06	5.15	5.53	• • •	5.20

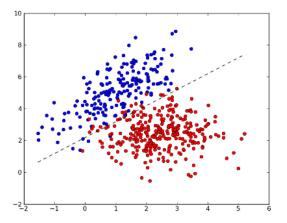
High-dimensional data (n < p).

Example: Magnetic resonance of the brain

- Czech National Institute for Mental Health
- Aim: spontaneous brain activity (schizophrenia diagnostics)
- n = 24 patients
- p = 4005 brain features (correlations between brain parts)
- Classification task: resting state vs. a movie (K = 2)



A classification task

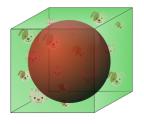


Classification into 2 groups (more generally: K groups).

Standard classification methods

- Linear discriminant analysis (LDA)
- Quadratic discriminant analysis (QDA)
- Logistic classification
- Support vector machines (SVM)
- Bayesian networks
- Classification trees/forests
- k-nearest neighbor
- Partial least squares

Curse of dimensionality



High-dimensional data

Examples of high-dimensional data in economics:

 Retail, advertising, insurance, online trade, portfolio optimization, customer analytics, ...

Analysis of high-dimensional data:

- Pre-processing
- Exploratory data analysis (EDA)
- Complexity reduction (dimensionality reduction)
- Some methods are unsuitable (e.g. neural networks)

Questions about dimensionality reduction:

- Is dimensionality reduction needed?
- Why supervised dimensionality reduction?
- Advantages and disadvantages: Interpretation, simplified computation, decorrelation of variables, easy visualization, ...
- Problem with repeated testing
- How many variables?

Reduction of dimensionality

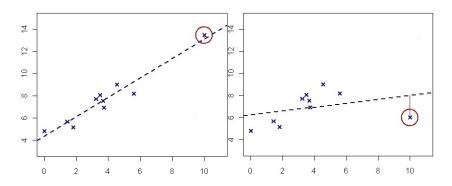
Variable selection:

- Tests (two-sample *t*-test)
- Variable selection based on maximal conditional entropy
- MRMR (Maximum Relevance Minimum Redundancy)
- Bayesian methods
- Intrinsic methods within a regression model

Feature extraction:

- Principal component analysis (PCA)
- Factor analysis
- Independent component analysis (ICA)
- Correspondence analysis
- Methods of information theory

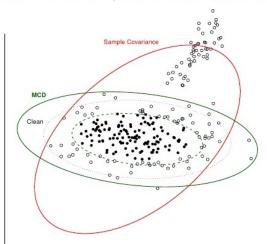
Outliers in linear regression



- Outliers vs. leverage points
- Outlier detection: masking and swamping effects

Outliers in multivariate estimation

Minimum Covariance Determinant (MCD) by Rousseeuw (1985): minimize determinant of sample covariance of 50% of data points:



Classification methods in a study of gene expressions

- 1 Introduction
- 2 Support vector machines (SVM)
- 3 LDA
- 4 Robust LDA

Robust optimization of mean

The concept of robust optimization

- Real numbers X_1, \ldots, X_n
- Model

$$X_i = \mu + e_i, \quad \mu \in \mathbb{R}, \quad i = 1, \dots, n,$$

with i.i.d. random values e_1, \ldots, e_n

The task

$$\underset{a \in \mathbb{R}}{\operatorname{argmin}} \sum_{i=1}^{n} (X_i - a)^2$$

Solution

$$\hat{a} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

• What if the data are contaminated by measurement errors?

Robust optimization of mean

We observe

$$X_i = \tilde{X}_i + \delta_i,$$

where $\delta = (\delta_1, \dots, \delta_n)^T$ is the vector of measurements errors

• The optimization task is replaced by

$$\begin{split} & \underset{a \in \mathbb{R}}{\operatorname{argmin}} \max_{|\delta| \leq D} \sum_{i=1}^{n} (X_i - a)^2 \\ & = \underset{a \in \mathbb{R}}{\operatorname{argmin}} \max_{|\delta| \leq D} \sum_{i=1}^{n} (\tilde{X}_i + \delta_i - a)^2, \end{split}$$

where the requirement $|\delta| \leq D$ denotes

$$|\delta_1| \leq D, \dots, |\delta_n| \leq D$$

for a fixed D > 0.

Robust optimization of mean

The solution has the form

$$\hat{a}=ar{X}-D, \qquad \text{if} \qquad ar{X}> \quad D$$

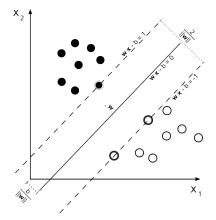
$$\hat{a}=0, \qquad \qquad \text{if} \quad -D \leq \quad ar{X} \quad \leq D$$

$$\hat{a}=ar{X}+D, \qquad \text{if} \qquad \quad ar{X} \quad <-D$$

Some authors understand it as a robust estimator of μ (Tibshirani et al., 2003).

Principles of SVM

- p-dimensional continuous data X_1, \ldots, X_n from two groups
- $\bullet \ \mathsf{Response} \ Y_1, \ldots, \, Y_n \in \{-1, 1\}$
- We search for a hyperplane $f(x) = w^T x b$ for classification to two groups, where $w \in \mathbb{R}^p$, $b \in \mathbb{R}$
- Maximal margin



SVM1: Linear SVM, separable case

Maximal margin

$$\min_{w,b} \left\{ \frac{1}{2} ||w||^2 \right\}$$

under the set of constraints

$$Y_i(w^TX_i-b)\geq 1, \quad i=1,\ldots,n.$$

The solution is obtained as a saddle point of the Lagrange functional

$$\min_{w,b} \max_{\alpha \geq 0} \left\{ \frac{1}{2} ||w||^2 - \sum_{i=1}^n \alpha_i \left[Y_i(w^T X_i - b) - 1 \right] \right\}$$

Computation:

- Dual problem (quadratic programming) yields $\hat{\alpha}$
- $\Longrightarrow \hat{w} = \sum_{i=1}^{n} \hat{\alpha}_i Y_i X_i$ (& sparsity)
- $\bullet \implies \hat{b}$
- ullet A new observation $Z \in \mathbb{R}^p$ is classified according to

$$\operatorname{sgn}(\hat{f}(Z)) = \operatorname{sgn}(\hat{w}^T Z - \hat{b}) = \operatorname{sgn}\left(\sum_{i=1}^n \hat{\alpha}_i Y_i X_i^T Z - \hat{b}\right).$$

SVM2: Linear SVM, nonseparable case

The optimization task considers a penalization for violating separability

$$\min_{w,b} \left\{ \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i \right\} \quad \text{for a fixed } C > 0$$

under

$$Y_i(w^T X_i - b) \ge 1 - \xi_i, \quad i = 1, ..., n,$$

 $\xi_i \ge 0, \quad i = 1, ..., n.$

Exploiting Lagrange multipliers

$$\min_{w,b,\xi \geq 0} \max_{\alpha \geq 0,\beta \geq 0} \left\{ \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i \left[Y_i (w^T X_i - b) - 1 + \xi_i \right] - \sum_{i=1}^n \beta_i \xi_i \right\}.$$

SVM3: Nonlinear SVM, nonseparable case

- We search for the hyperplane $f(x) = h(x)^T w b$ for classification into two groups
 - $w \in \mathbb{R}^p$
 - $b \in \mathbb{R}$
 - h is a known nonlinear function
- Kernel trick

$$K(X_i, X_j) = h(X_i)^T h(X_j)$$

• Dual problem for the optimization task

$$\max_{\alpha} \left\{ \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} Y_{i} Y_{j} K(X_{i}, X_{j}) \right\}$$

under corresponding constraints

SVM3: Nonlinear SVM, nonseparable case

- $\hat{w} = \sum_{i=1}^{n} \hat{\alpha}_i Y_i h(X_i)$
- A new observation $Z \in \mathbb{R}^p$ is classified according to the hyperplane:

$$f(Z) = h(Z)^{T} \hat{w} - b = \sum_{i=1}^{n} \hat{\alpha}_{i} Y_{i} K(Z, X_{i}) - b$$

• Special case with a Gaussian kernel:

$$f(Z) = \sum_{i=1}^n \hat{\alpha}_i \, Y_i \exp\left\{-\frac{||Z-X_i||^2}{2\sigma^2}\right\} - b \quad \text{for a fixed } \sigma > 0$$

Motivation for robust SVM:

- Measurement errors
- Rounding
- Random regressors
- Uncertainty in regressors

SVM4: Linear SVM, nonseparable case, robust approach

We observe

$$X_i = \tilde{X}_i + \delta_i, \quad i = 1, \dots, n$$

where δ_i is a *p*-dimensional vector of measurement errors for the *i*-th observation.

We assume

$$||\delta_i||_p \leq D_i, \quad D_i \in \mathbb{R}, \quad i = 1, \dots, n, \quad p \in [1, \infty].$$

The set of conditions from SVM2

$$Y_i(w^TX_i - b) \ge 1 - \xi_i, \quad i = 1, ..., n$$

corresponds to

$$Y_i(w^T \tilde{X}_i - b) + Y_i w^T \delta_i \geq 1 - \xi_i, \quad i = 1, \dots, n.$$

SVM4: Linear SVM, nonseparable case, robust approach

This set of conditions is assumed for any $\delta_1, \ldots, \delta_n$:

$$\min_{||\delta_i||_{b} \leq D_i} \left\{ Y_i(w^T \tilde{X}_i - b) + Y_i w^T \delta_i \right\} \geq 1 - \xi_i, \quad i = 1, \dots, n.$$

Now we assume a fixed w and search for the solution over δ_i :

$$\min_{||\delta_i||_p \leq D_i} \left\{ Y_i w^T \delta_i \right\}.$$

Hölder inequality yields

$$|Y_i w^T \delta_i| \leq ||w||_q ||\delta_i||_p \leq D_i ||w||_q,$$

where $||.||_q$ is a dual norm to $||.||_p$ and therefore

$$\min_{||\delta_i||_p \le D_i} \left\{ Y_i w^T \delta_i \right\} = -D_i ||w||_q.$$

SVM4: Linear SVM, nonseparable case, robust approach

Thus, the resulting hyperplane is obtained as a solution of the same optimization task as in SMV2

$$\min_{w,b} \left\{ \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i \right\}$$

but under the set of conditions

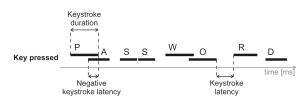
$$Y_i(w^T X_i - b) - D_i ||w||_q \ge 1 - \xi_i, \quad i = 1, ..., n,$$

 $\xi_i \ge 0, \quad i = 1, ..., n.$

- The requirement on the norm of the error (in the primary task) yields a regularization of the (primary) task
- Complicated computation
- No implementation in R
- Other approaches: robust nonlinear SVM
- Other approaches: min $||w||_p$, $p \in [1, \infty]$

Keystroke dynamics

- 10 individuals
- 10× slowly, 10× quickly
- K-L-A-D-R-U-B-Y
- p = 15 variables [in milliseconds]
- Analysis: Semela (2016)



Keystroke dynamics

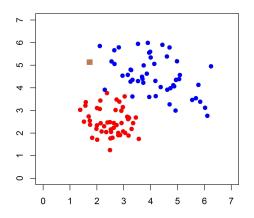
- First task: Classification of the typing style (speed)
- Second task: Classification of individuals
- Classification accuracy in a leave-one-study

	LDA	Linear SVM	Nonlinear SVM	Linear robust SVM
Classification of the typing style	0.595	0.615	0.730	0.645
Optimal value of <i>C</i>	_	0.160	3.000	0.700
Classification of individuals	0.830	0.835	0.850	0.715

Classification methods in a study of gene expressions

- 1 Introduction
- 2 SVM
- 3 Linear discriminant analysis (LDA)
- 4 Robust LDA

A classification task to K groups



Mahalanobis distance:
$$d(Z, \bar{X}_k) = \sqrt{(\bar{X}_k - Z)^T S^{-1}(\bar{X}_k - Z)}, \quad k = 1, \dots, K$$

Linear discriminant analysis (LDA)

Data: *K* different groups of *p*-dimensional data.

$$X_{11}, \ldots, X_{1n_1}$$
 X_{21}, \ldots, X_{2n_2}
 \vdots
 X_{K1}, \ldots, X_{Kn_K}

Multivariate normality. Covariance matrix Σ .

An observation Z is classified to the k-th group, which has the maximal value of

$$-\frac{1}{2}(\bar{X}_k-Z)^TS^{-1}(\bar{X}_k-Z)+\log \pi_k,$$

where

- \bar{X}_k = is the mean of the k-th group,
- S = pooled empirical covariance matrix,
- π_k = prior probability of the k-th group.

LDA

How LDA can be derived:

Maximum likelihood for normal data

•

$$\max_{a \neq 0} \frac{a^T B a}{a^T W a}$$

(B variability between groups, W within groups)

• Bayesian approach: max posterior probability

Properties:

- Linear separability
- $P(Z \in \text{group } 1), \dots, P(Z \in \text{group } K)$

Possible extension:

• Quadratic discriminant analysis

Regularized linear discriminant analysis (RDA)

p-dimensional observations in K different groups (n < p)

Classification of Z to the k-th group is based on

$$-\frac{1}{2}(\bar{X}_k - Z)^T S^{-1}(\bar{X}_k - Z) + \log \pi_k$$

$$-rac{1}{2}(ar{X}_k-Z)^T(S^*)^{-1}(ar{X}_k-Z)+\log \pi_k$$

Regularized covariance matrix for $\lambda \in (0,1]$: $S^* = (1-\lambda)S + \lambda T$

Most commonly:

- $T = \mathcal{I}_p$
- $T = \bar{s}\mathcal{I}_p$, where $\bar{s} = \sum_{i=1}^p S_{ii}/p$
- $T = \text{diag}\{S_{11}, \dots, S_{pp}\}$

Regularized mean estimation

Definition

•

$$ar{X}_k^{(2)} = (1 - \delta^{(2)})ar{X}_k + \delta^{(2)}ar{X}, \quad \delta^{(2)} \in [0, 1]$$

•

$$\begin{split} \bar{X}_k^{(1)} &= & \operatorname{sgn}(\bar{X}_k) \left(|\bar{X}_k| - \delta^{(1)} \right)_+ \\ &= & \operatorname{sgn}(\bar{X}_k) \max \left\{ |\bar{X}_k| - \delta^{(1)}, 0 \right\}, \quad \delta^{(1)} \in \mathbb{R} \end{split}$$

•

$$\bar{X}_k^{(0)} = \bar{X}_k \cdot \mathbb{1}\left[|\bar{X}_k > \delta^{(0)}|\right], \quad \delta^{(0)} \in \mathbb{R}$$

- Sparsity
- Choice of regularization parameters

Regularized LDA with different mean estimation

RDA

$$\ell_k^* = (\bar{X}_k)^T (S^*)^{-1} Z - \frac{1}{2} (\bar{X}_k)^T (S^*)^{-1} \bar{X}_k + \log \pi_k$$

RDA2

$$\tilde{\ell}_k^{(2)} = (\bar{X}_k^{(2)})^T (S^*)^{-1} Z - \frac{1}{2} (\bar{X}_k^{(2)})^T (S^*)^{-1} \bar{X}_k^{(2)} + \log \pi_k$$

RDA1

$$\tilde{\ell}_k^{(1)} = (\bar{X}_k^{(1)})^T (S^*)^{-1} Z - \frac{1}{2} (\bar{X}_k^{(1)})^T (S^*)^{-1} \bar{X}_k^{(1)} + \log \pi_k$$

RDA0

$$\tilde{\ell}_k^{(0)} = (\bar{X}_k^{(0)})^T (S^*)^{-1} Z - \frac{1}{2} (\bar{X}_k^{(0)})^T (S^*)^{-1} \bar{X}_k^{(0)} + \log \pi_k$$

- Which regularization to be used?
- Implementation in R: affine equivariance is lost!
- Regularization ←⇒ robustness

LDA for n < p: Ye et al. (2006), Pekař (2015)

- p-dimensional observations X_1, \ldots, X_n in K groups
- S = (pooled) covariance matrix
- $r = \operatorname{rank}(S)$
- X_k = mean in the k-th group

$$\mathcal{S}^*_{ au} = au \mathcal{S} + (1- au)\mathcal{I}_p, \quad au \in (0,1)$$

We consider

•

$$S = QDQ^T = \begin{pmatrix} Q_r & P \end{pmatrix} \begin{pmatrix} D_r & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} Q_r^I \\ P^T \end{pmatrix}$$

- $S_{\tau}^* = QD_{\tau}Q^T$
- $D_{r\tau} = \tau D_r + (1-r)\mathcal{I}_r$

Then

$$\arg\min_{j\in 1,...,K}||D_{\tau}^{-1/2}Q^{T}(Z-\bar{X}_{k})|| = \arg\min_{k\in 1,...,K}||D_{r\tau}^{-1/2}Q_{r}^{T}(Z-\bar{X}_{k})||.$$

 Ye J., Xiong T., Li Q., Janardan R., Bi J., Cherkassky V., Kambhamettu C. (2006): Efficient model selection for regularized linear discriminant analysis. *Proceedings International Conference on Information and Knowledge Management*, 532-539.

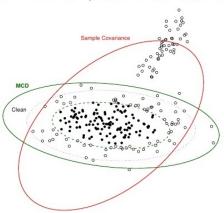
Classification methods in a study of gene expressions

- 1 Introduction
- 2 SVM
- 3 LDA
- 4 Robust LDA

- Duintjer Tebbens J., Kalina J.: A computationally inexpensive improvement of the C-step for the minimum covariance determinant estimator. Submitted to: Computational Statistics & Data Analysis.
- Kalina J., Hlinka J.: On coupling robust estimation with regularization for high-dimensional data. Studies in Classification, Data Analysis and Knowledge Organization. Accepted.
- Kalina J., Hlinka J.: Implicitly weighted robust classification applied to brain activity research. Biomedical Engineering Systems and Technologies, Communications in Computer and Information Science. Accepted.

Why robust statistics?

Minimum Covariance Determinant (MCD) by Rousseeuw (1985): minimize determinant of sample covariance of 50% of data points:



The concept of robustness

Robust statistics

- Sensitivity of standard methods
- Contaminated normal distribution
- Breakdown point = minimal fraction of data that can drive an estimator beyond all bounds when set to arbitrary values
- Not robustness with respect to the model (data distribution)
- Robustification of standard methods

- Huber P.J. Robust statistics. Wiley, New York, 1981.
- Hampel F.R., Rousseeuw P.J., Ronchetti E.M., Strahel W.A. Robust Statistics: The approach based on influence functions. Wiley, New York, 1986.
- Rousseeuw P.J., Leroy A.M. Robust regression and outlier detection. Wiley, New York, 1987.
- Jurečková J., Sen P.K., Picek J. Methodology in robust and nonparametric statistics. CRC Press, Boca Raton, 2013.

Robust estimation of multivariate location and scatter

- X_1, \ldots, X_n i.i.d. p-dimensional
- n > p
- Elliptically symmetric unimodal distribution
 - 4

$$f(x) = \frac{1}{(\det \Sigma)^{1/2}} g\left((x - \mu)^T \Sigma^{-1}(x - \mu)\right), \quad x \in \mathbb{R}^p$$

- $\mu \in \mathbb{R}^p$
- $\Sigma \in PDS(p \times p)$
- g decreasing function
- Minimum Covariance Determinant (MCD)
 - Rousseeuw P.J., Leroy A.M. (1984): Least median of squares regression. Journal of the American Statistical Association 79, 871–880.
- Minimum Weighted Covariance Determinant (MWCD)
 - Roelant E., van Aelst S., Willems G. (2009): The minimum weighted covariance determinant estimator. Metrika 70, 177 – 201.

Minimum covariance determinant (MCD)

- Robust estimator of multivariate location and scatter
- H = subset of h observations

$$\bar{X}_{MCD} = \sum_{i \in H} w_i X_i$$

 $S_{MCD} = \delta \sum_{i \in H} (X_i - \bar{X}_{MCD})(X_i - \bar{X}_{MCD})^T,$

where δ is a consistency factor (to ensure Fisher consistency)

 $min det(S_{MCD})$

over all h-subsets of observations

•

 Global & local robustness, affine equivariance, consistency, asymptotic normality

Minimum Weighted Covariance Determinant (MWCD)

• Weights
$$w_1 \geq w_2 \geq \cdots \geq w_n$$
; $\sum_{i=1}^n w_i = 1$.

•

$$\bar{X}_{MWCD} = \sum_{i=1}^{n} w_i X_i$$

•

$$S_{MWCD} = \delta \sum_{i=1}^{n} w_i (X_i - \bar{X}_{MWCD}) (X_i - \bar{X}_{MWCD})^T$$

•

$$min det(S_{MWCD})$$

over all permutations of weights

Approximate algorithm

Minimum Weighted Covariance Determinant (MWCD)

$$\begin{pmatrix} \bar{X}_{MWCD} \\ \tilde{S}_{MWCD} \end{pmatrix} = \underset{m, C; det \ C=1}{\operatorname{argmin}} \sum_{i=1}^{n} a_n(R_i) \underbrace{(X_i - m)^T C^{-1}(X_i - m)}_{d_i^2(m, C)}$$

- $a_n =$ nonincreasing function
- $m \in \mathbb{R}^p$
- $C = \text{symmetric positive definite matrix } p \times p$
- R_i is the rank $d_i^2(m, C)$ among $d_1^2(m, C), \ldots, d_n^2(m, C)$.
- ullet $S_{MWCD}=\delta ilde{S}_{MWCD}$, where δ is a consistency factor

Weights for the MWCD estimator

Fixed magnitudes of weights:

- Linearly decreasing weights
- Properties of the estimator & corresponding functional

Adaptive (data-dependent) weights:

•

$$w(t) = \frac{F_{\chi}^{-1}(t)}{(G_n^0)^{-1}(t)}, \quad t \in \left\{\frac{1}{2n}, \frac{3}{2n}, \dots, \frac{2n-1}{2n}\right\}$$

- ullet $F_\chi^{-1}=$ quantile function of χ_p^2 distribution
- $(G_n^0)^{-1} =$ empirical quantile function of $d_1^2(\hat{\mu}, \hat{\Sigma}), \dots, d_n^2(\hat{\mu}, \hat{\Sigma})$
- Approximate algorithm
- Asymptotic eficiency
- High breakdown point

Regularized MWCD estimator

- MWCD: Infeasible for a high dimension
- Regularized MWCD-covariance matrix S^*_{MWCD} :

$$\min \det \left((1 - \lambda) S_w + \lambda \mathcal{I}_p \right), \quad \lambda \in (0, 1]$$

- High robustness
- Regularized MWCD estimator (using M-estimation of Chen et al., 2011) $\Longrightarrow \bar{X}_{k,MWCD}, \, \tilde{S}_{MWCD}$

Proposal of MWCD-RDA, MWCD-RDA2, MWCD-RDA1, MWCD-RDA0.

Example: Cardiovascular genetic study

Classification to 2 groups:

- 24 patients vs. 24 controls
- p = 38590 gene expressions
- Leave-one-out cross validation
- Youden's index = sensitivity + specificity -1

Method	Youden's index	
LDA	1.00	
RDA1	1.00	
SVM	1.00	
Classification tree	0.94	
Lasso-LR	0.97	
Multilayer perceptron	Infeasible	
MWCD-RDA	1.00	
MWCD-RDA2	1.00	
MWCD-RDA1	1.00	
Dimensionality reduction	10 variables	
$PCA \Longrightarrow LDA$	0.15	
$PCA \Longrightarrow MWCD-RDA1$	0.62	

Example: Brain activity

- Leave-one-out cross validation
- Contamination by $N(0, \sigma^2)$ noise

	Youden's index = sensitivity + specificity -1			
Method	Raw data	$\sigma = 0.1$	$\sigma = 0.2$	$\sigma = 0.3$
RDA1	1.00	1.00	1.00	0.99
SVM	1.00	0.99	0.98	0.96
Classification tree	0.96	0.95	0.91	0.92
Lasso-LR	0.99	1.00	0.97	0.94
MWCD-RDA	1.00	1.00	1.00	1.00
MWCD-RDA2	1.00	1.00	1.00	1.00
MWCD-RDA1	1.00	1.00	1.00	1.00
Dimensionality reduction	10 variables			
$PCA \Longrightarrow LDA$	1.00	0.94	0.93	0.88
$PCA \Longrightarrow MWCD-RDA$	1.00	0.95	0.94	0.89
$PCA \Longrightarrow MWCD-RDA2$	1.00	0.95	0.94	0.89
PCA ⇒ MWCD-RDA1	1.00	0.95	0.94	0.89

Two other examples

	Youden's index		
Method	Metabolomic profiles	Keystroke dynamics	
K	K = 2	K = 2	
n	n = 42 $n = 32$		
р	p = 518	p = 15	
RDA1	0.91	0.80	
SVM	0.92	0.85	
Classification tree	0.84	0.11	
Lasso-LR	0.87	0.82	
MWCD-RDA	0.91	0.79	
Dimensionality reduction	20 variables	4 variables	
$PCA \Longrightarrow LDA$	0.70	0.59	
$PCA \Longrightarrow MWCD-RDA$	0.72	0.59	
$MRMR \Longrightarrow LDA$	0.88	0.72	
$MRMR \Longrightarrow MWCD\text{-}RDA$	0.90	0.76	

Discussion: robust classification

Advantages of MWCD-RDA (and other versions):

- Improvement for contaminated data
- No need for a prior dimensionality reduction
- Comprehensibility
- An efficient algorithm based on numerical linear algebra

Limitations of MWCD-RDA:

- Contaminated multivariate normal data
- The weights are assigned to individual observations
- Variability not substantially different across variables
- Intensive computations are required
- Regularization parameters should be small

Conclusions

- Introduction
- SVM
- LDA
- Robust LDA

Problems of common classifiers:

- Various data formats
- Computational demands
- Missing values
- Instability
- Dimensionality reduction?
- "No free lunch" theorems
- Design issues (how many observations?)

Conclusions

Machine learning:

- Universal classifiers?
- Linear separability for n < p is guaranteed!
- SVM
 - Too many support vectors
 - ⇒ overfitting
 - No regularization
- Complicated for K > 2 (voting scheme etc.)
- Suboptimal solution
- Interpretation

⇒ THANK YOU FOR YOUR ATTENTION ←