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Introduction

Example: Credit approval

Cases: clients

Variables: personal information about credit cards and proprietors

e Continuous
o Categorial

@ Aims:

o Classification to two groups
o Probability of belonging to a given group

o Logistic regression model
Yi=po+ b1 Xn+--+BXp, i=1,...,n

@ Possibly a large number of variables
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Introduction

Example: Cardiovascular genetic study

Center of Biomedical Informatics (2006-2011, prof. Zvarova)

Aim of the study:
Diagnostics of cardiovascular diseases.

Individuals (Municipal Hospital in Caslav):
@ Acute myocardial infarction (n = 98)
@ Cerebrovascular stroke (n = 46)

@ Controls (n = 169)

Design:
Paired design based on risk factors (age, sex, hypertension, smoking).

Data:
Personal data. Clinical and biochemical measurements. Gene expressions across
the whole genome from a sample of peripheral blood.
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Introduction

Example: Cardiovascular genetic study

Table of gene expression values:

24 patients with stroke 24 control persons

Gene #1 #H2 o H2A| #1 H2 ... #24

1 ADORA3 | 582 604 --- 599|571 6.12 -.-- 6.09

2 CPD 353 408 --- 232|421 501 --- 466

3 ECHDC3 250 271 --- 317 | 299 352 ... 301

4 VNN3 338 303 --- 459|456 398 --- 470

5 ILIBRAP 403 491 --- 581|512 501 --- 523

6 ERLIN1 576 438 --- 490 | 649 502 ... 6.18
38590 PHACTRL | 521 499 ... 506 | 515 553 ... 520

High-dimensional data (n < p).
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Introduction

Example: Magnetic resonance of the brain

@ Czech National Institute for Mental Health

@ Aim: spontaneous brain activity (schizophrenia diagnostics)
@ n = 24 patients

@ p = 4005 brain features (correlations between brain parts)

o Classification task: resting state vs. a movie (K = 2)

IMH

NATIONAL INSTITUTE OF MENTAL HEALTH
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Introduction

A classification task

-z

Classification into 2 groups (more generally: K groups).
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Introduction

Standard classification methods

@ Linear discriminant analysis (LDA)
@ Quadratic discriminant analysis (QDA)
@ Logistic classification

@ Support vector machines (SVM)

Bayesian networks
Classification trees/forests

k-nearest neighbor

Partial least squares
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Introduction

Curse of dimensionality
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Introduction

High-dimensional data

Examples of high-dimensional data in economics:

o Retail, advertising, insurance, online trade, portfolio optimization,
customer analytics, ...

Analysis of high-dimensional data:
@ Pre-processing
@ Exploratory data analysis (EDA)
@ Complexity reduction (dimensionality reduction)
°

Some methods are unsuitable (e.g. neural networks)

Questions about dimensionality reduction:
@ Is dimensionality reduction needed?
o Why supervised dimensionality reduction?

o Advantages and disadvantages: Interpretation, simplified computation,
decorrelation of variables, easy visualization, ...

Problem with repeated testing

How many variables?
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Introduction

Reduction of dimensionality

Variable selection:

@ Tests (two-sample t-test)
Variable selection based on maximal conditional entropy
MRMR (Maximum Relevance Minimum Redundancy)

Bayesian methods

Intrinsic methods within a regression model

Feature extraction:
@ Principal component analysis (PCA)

o Factor analysis

Independent component analysis (ICA)

Correspondence analysis

@ Methods of information theory
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Introduction

Outliers in linear regression
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@ Outliers vs. leverage points

o Qutlier detection: masking and swamping effects
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Introduction

QOutliers in multivariate estimation

Minimum Covariance Determinant (MCD) by Rousseeuw (1985):
minimize determinant of sample covariance of 50% of data points:
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Classification methods in a study of gene expressions

Introduction

Support vector machines (SVM)

LDA

Robust LDA
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Robust optimization of mean

The concept of robust optimization

Real numbers Xi, ..., X,
Model

Xi=p+e, peR, i=1,...,n,

with i.i.d. random values e, ..., e,
@ The task

argmin Z(X,- —a)’

acR -1

@ Solution

@ What if the data are contaminated by measurement errors?
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Robust optimization of mean

o We observe
Xi = X; + i,
where § = (61,...,08,)7 is the vector of measurements errors
@ The optimization task is replaced by

n
. 2
argmin max E (Xi — a)
acR [0|<D —1

n

argmin max ) (Xi+ 61 - )’

where the requirement |§| < D denotes
|01] < D,...,|6,] <D

for a fixed D > 0.
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Robust optimization of mean

The solution has the form

4=X-D, if X> D
4=0, if -D< X <D
4=X+D, if X <-D

Some authors understand it as a robust estimator of p (Tibshirani et al., 2003).
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Principles of SVM

p-dimensional continuous data Xi, ..., X, from two groups

@ Response Yi,...,Y, e {-1,1}

We search for a hyperplane f(x) = w’ x — b for classification to two
groups, where w € RP, be R

Maximal margin X,




SVM1: Linear SVM, separable case

min 4 =|w]?
W,Ib 2 v

Yiw'X;—b)>1, i=1,...,n

Maximal margin

under the set of constraints

The solution is obtained as a saddle point of the Lagrange functional

min m%{énwﬁ _ z":a, [Vitw X b) - 1]}

i=1

Computation:

Dual problem (quadratic programming) yields &
= Ww=> 4 YiX (& sparsity)

— b

A new observation Z € R” is classified according to

sgn(f‘\(Z)) = sgn(vT/TZ - 13) =sgn <Z &YXz - B) .

i=1
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SVM2: Linear SVM, nonseparable case

The optimization task considers a penalization for violating separability

1, . .
min {2||W| + C;&,} for a fixed C >0
under
Yiw' Xi—b)>1—¢&, i=1,...,n,
&>0, i=1,...,n
Exploiting Lagrange multipliers

i MM{'WI SR AT X—b>—1+4—§@ff}-

i=1
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SVM3: Nonlinear SVM, nonseparable case

o We search for the hyperplane f(x) = h(x)"w — b for classification into
two groups

o weRP
e beRR
o his a known nonlinear function

o Kernel trick
K(Xi, X;) = h(Xi)" h(X;)

@ Dual problem for the optimization task

mo?x{iai — ;iiaiajyiyjK(Xiv)g)}
-1

i=1 j=1

under corresponding constraints
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SVM3: Nonlinear SVM, nonseparable case

o W =31 &iYih(Xi)

@ A new observation Z € R” is classified according to the hyperplane

"W—b=> &YK(ZX)~b

i=1

f(Z) = h(Z)

@ Special case with a Gaussian kernel:

HZ X” }fb for a fixed o > 0

f(Z) = ZaYexp{ 22

Motivation for robust SVM:
@ Measurement errors
@ Rounding
@ Random regressors

@ Uncertainty in regressors

Jan Kalina
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SVM4: Linear SVM, nonseparable case, robust approach

We observe _
X,»:X,-+6,-, i=1,...,n

where §; is a p-dimensional vector of measurement errors for the i-th
observation.

We assume

10illp <Di, DieR, i=1,....,n, pé€]Jl, o0

The set of conditions from SVM?2
Yiw' Xi—b)>1—-¢&, i=1,...,n
corresponds to

Y,-(WT)?,-fb)JrY,'WTd-zlff,-, i=1,...,n.
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SVM4: Linear SVM, nonseparable case, robust approach

This set of conditions is assumed for any d1,...,0s:

_ >1-¢&, i=1,...,n
H6HP<D{YWX b)+YW5} 1-¢&, i=1,....n

Now we assume a fixed w and search for the solution over §;:

. T
min {Y;W 6,-}.
[16;]1p<D;

Holder inequality yields

[Yiw" 81| < ||wllqll&i]]» < Dillwlla,

where ||.||q is a dual norm to ||.||, and therefore

min {YIWT(SI'} = —Di[|w|lq-

[16;11p<D;

Jan Kalina Robust Classifiers in Multivariate Statistics and Machine Learning



SVM4: Linear SVM, nonseparable case, robust approach

Thus, the resulting hyperplane is obtained as a solution of the same
optimization task as in SMV2

T -
g;p{lel +C;£f}
but under the set of conditions
Yi(w'Xi —b) —Dil|w|lg >1-¢&, i=1,....n,

&E>0, i=1,...,n.

The requirement on the norm of the error (in the primary task) yields a
regularization of the (primary) task

Complicated computation

No implementation in R

Other approaches: robust nonlinear SVM

Other approaches: min||w/||p, p € [1, 0]
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Keystroke dynamics

10 individuals

10x slowly, 10x quickly
K-L-A-D-R-U-B-Y

p = 15 variables [in milliseconds]
Analysis: Semela (2016)

Keystroke

duration
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Keystroke dynamics

o First task: Classification of the typing style (speed)
@ Second task: Classification of individuals

o Classification accuracy in a leave-one-study

LDA Linear Nonlinear Linear
SYUM  SUM  robust SVM
Classification of the ) o004 615 0730 0.645
typing style
Optimal — 0160  3.000 0.700
value of C
Classification 0830 0835  0.850 0.715

of individuals
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LDA

Classification methods in a study of gene expressions

Introduction

SVM

Linear discriminant analysis (LDA)
Robust LDA
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A classification task to K groups
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Mahalanobis distance: d(Z, Xk) = \/()_(k - 2)TS (X~ 2), k=1,....K

Jan Kalina Robust Classifiers in Multivariate Statistics and Machine Learning



LDA

Linear discriminant analysis (LDA)

Data: K different groups of p-dimensional data.

X11, - ,Xl,,l
Xo1,..., Xon,
XK1, .. ,XK,,K

Multivariate normality. Covariance matrix X.

An observation Z is classified to the k-th group, which has the maximal value of
1 - 4=
—5 (X — Z)'STHXk — Z) + log k.,

where
@ X, = is the mean of the k-th group,
@ S = pooled empirical covariance matrix,
@ T, = prior probability of the k-th group.
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LDA

How LDA can be derived:
o Maximum likelihood for normal data

o

a'Ba
aWa

(B variability between groups, W within groups)

max
a#0

@ Bayesian approach: max posterior probability

Properties:
@ Linear separability
e P(Z € group 1),...,P(Z € group K)

Possible extension:

@ Quadratic discriminant analysis
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LDA

Regularized linear discriminant analysis (RDA)

p-dimensional observations in K different groups (n < p)

Classification of Z to the k-th group is based on

1 - -
fi(xku)Ts Y(Xi — Z) + log mk

L= 2T (5 (K = 2) + log

N

Regularized covariance matrix for A € (0,1]: $* = (1 — A)S+ AT

Most commonly:
o T =1,
o T =5, where5=5" Si/p
o T =diag{S1,...,Spp}
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Regularized mean estimation

o
XP =(1-6NX 469X, 6 elo,1]
o
XD = sgn(Xe) (|>‘<k\ - 5“’)
+
—  sgn(Xe) max {|>‘<k| - 5‘“,0} , WeRr
° —_ —_ —
P =X1[1% >8], @er
@ Sparsity

@ Choice of regularization parameters
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LDA

Regularized LDA with different mean estimation

o RDA
= (X)"(5") 'z - %()‘(k)T(s*)*l)"(k + log 7k

o RDA2

1 = (XO)7(5) 12 - S(XO)(5) X + logmy
o RDA1

B = (X)) 2 = (%05 KD + log
e RDAO

07 = (XY ()72 = HXO) ()X + logm,
@ Which regularization to be used?

Implementation in R: affine equivariance is lost!

Regularization <= robustness
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LDA

LDA for n < p: Ye et al. (2006), Peka¥ (2015)

p-dimensional observations Xi,..., X, in K groups
S = (pooled) covariance matrix
r = rank(S)

Xk = mean in the k-th group

S*=7S+(1-1)T, 7e€(0,1)

We consider

]
_ T D, 0 QF
s-ee- (o 0)( 5 3)( )
° S:=QD.Q"
e D, =71D,+(1-r),
Then

. -12AT(7 % \|| — ; -1/20T(7 _ X,
arg min [ID-77Q(Z = X)l| =arg min [ID;7Q (Z = Xl

@ Ye J., Xiong T., Li Q., Janardan R., Bi J., Cherkassky V., Kambhamettu C. (2006): Efficient
model selection for regularized linear discriminant analysis. Proceedings International
Conference on Information and Knowledge Management, 532—-539.
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Robust LDA

Classification methods in a study of gene expressions

Introduction

SVM
LDA

Robust LDA

@ Duintjer Tebbens J., Kalina J.: A computationally inexpensive improvement of the C-step for
the minimum covariance determinant estimator. Submitted to: Computational Statistics &
Data Analysis.

@ Kalina J., Hlinka J.: On coupling robust estimation with regularization for high-dimensional
data. Studies in Classification, Data Analysis and Knowledge Organization. Accepted.

@ Kalina J., Hlinka J.: Implicitly weighted robust classification applied to brain activity
research. Biomedical Engineering Systems and Technologies, Communications in Computer
and Information Science. Accepted.
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Robust LDA

Why robust statistics?

Minimum Covariance Determinant (MCD) by Rousseeuw (1985):
minimize determinant of sample covariance of 50% of data points:
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Robust LDA

The concept of robustness

Robust statistics

Sensitivity of standard methods
Contaminated normal distribution

Breakdown point = minimal fraction of data that can drive an estimator
beyond all bounds when set to arbitrary values

Not robustness with respect to the model (data distribution)

Robustification of standard methods

Huber P.J. Robust statistics. Wiley, New York, 1981.

Hampel F.R., Rousseeuw P.J., Ronchetti E.M., Strahel W.A. Robust Statistics: The
approach based on influence functions. Wiley, New York, 1986.

Rousseeuw P.J., Leroy A.M. Robust regression and outlier detection. Wiley, New York, 1987.

Juretkova J., Sen P.K., Picek J. Methodology in robust and nonparametric statistics. CRC
Press, Boca Raton, 2013.
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Robust LDA

Robust estimation of multivariate location and scatter

e Xi,..., X, iid. p-dimensional

en>p
o Elliptically symmetric unimodal distribution
o
1
fx)=———g((x—p)T"= Y x—p)), xecRP
()= (k== (x - )
o u€RP
e X € PDS(p x p)
o g decreasing function
@ Minimum Covariance Determinant (MCD)

@ Rousseeuw P.J., Leroy A.M. (1984): Least median of squares regression. Journal of
the American Statistical Association 79, 871—880.

@ Minimum Weighted Covariance Determinant (MWCD)

@ Roelant E., van Aelst S., Willems G. (2009): The minimum weighted covariance
determinant estimator. Metrika 70, 177 —201.
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Robust LDA

Minimum covariance determinant (MCD)

@ H = subset of h observations

Robust estimator of multivariate location and scatter

o
Xucp = Z w; Xi
icH
°
v v T
Smep =96 Z(Xi — Xwmeo)(Xi — Xmep)
icH
where § is a consistency factor (to ensure Fisher consistency)
°
min det(SMCD)
over all h-subsets of observations
@ Global & local robustness, affine equivariance, consistency, asymptotic

normality
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Robust LDA

Minimum Weighted Covariance Determinant (MWCD)

o Weights w1 > wo > -+ > wp; 3 i, w; = 1.

°
XMWCD = Z w; X;
i—1
°
Smwep =6 Z wi(Xi — Xmwep ) (X — XMWCD)T
i—1
°

min det(SMWCD)

over all permutations of weights

@ Approximate algorithm
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Robust LDA

Minimum Weighted Covariance Determinant (MWCD)

() = smmn a6 €06

Smwep m, Cidet C=1

o (m,C)
@ a, = nonincreasing function
e meRP
o C = symmetric positive definite matrix p X p
@ R is the rank d?(m, C) among di(m, C),...,d?(m, C).

@ Smwep = dSmwep, where § is a consistency factor
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Robust LDA

Weights for the MWCD estimator

Fixed magnitudes of weights:
@ Linearly decreasing weights

@ Properties of the estimator & corresponding functional

Adaptive (data-dependent) weights:

() 1 3 2n—1
W(t)f(cs)*l(t)’ t {2n’2n""’ 2n }

° F{l = quantile function of X% distribution

° (G,?)_l = empirical quantile function of d?(f, %), ..., d2(p, %)
@ Approximate algorithm
o Asymptotic eficiency

o High breakdown point
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Robust LDA

Regularized MWCD estimator

e MWOCD: Infeasible for a high dimension
o Regularized MWCD-covariance matrix Sywep:
mindet ((1 — A)Sw + A\Z,), A€ (0,1]
@ High robustness
o Regularized MWCD estimator (using M-estimation of Chen et al., 2011)

= Xk,mwcp, Smwep

Proposal of MWCD-RDA, MWCD-RDA2, MWCD-RDA1, MWCD-RDAO.
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Robust LDA

Example: Cardiovascular genetic study

Classification to 2 groups:
@ 24 patients vs. 24 controls

@ p = 38590 gene expressions
o Leave-one-out cross validation
@ Youden's index = sensitivity + specificity —1
| Method [ Youden's index ‘
LDA 1.00
RDA1 1.00
SVM 1.00
Classification tree 0.94
Lasso-LR 0.97
Multilayer perceptron Infeasible
MWCD-RDA 1.00
MWCD-RDA2 1.00
MWCD-RDA1 1.00
Dimensionality reduction 10 variables
PCA = LDA 0.15
PCA — MWCD-RDA1 0.62
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Robust LDA

Example: Brain activity

@ Leave-one-out cross validation

o Contamination by N(0, 5°) noise

Youden's index = sensitivity + specificity —1

Method Rawdata | 0=01]|0=02] 0=03
RDA1 1.00 1.00 1.00 0.99
SVM 1.00 0.99 0.98 0.96
Classification tree 0.96 0.95 0.91 0.92
Lasso-LR 0.99 1.00 0.97 0.94
MWCD-RDA 1.00 1.00 1.00 1.00
MWCD-RDA?2 1.00 1.00 1.00 1.00
MWCD-RDA1 1.00 1.00 1.00 1.00

Dimensionality reduction 10 variables

PCA — LDA 1.00 0.94 0.93 0.88
PCA — MWCD-RDA 1.00 0.95 0.94 0.89
PCA — MWCD-RDA2 1.00 0.95 0.94 0.89
PCA —= MWCD-RDA1 1.00 0.95 0.94 0.89
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Two other examples

Robust LDA

Youden's index
Method Metabolomic profiles | Keystroke dynamics
K K=2 K=2
n n =42 n=32
p p =518 p=15
RDA1 0.91 0.80
SVM 0.92 0.85
Classification tree 0.84 0.11
Lasso-LR 0.87 0.82
MWCD-RDA 0.91 0.79
Dimensionality reduction 20 variables 4 variables
PCA = LDA 0.70 0.59
PCA — MWCD-RDA 0.72 0.59
MRMR = LDA 0.88 0.72
MRMR — MWCD-RDA 0.90 0.76

Jan Kalina
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Robust LDA

Discussion: robust classification

Advantages of MWCD-RDA (and other versions):
@ Improvement for contaminated data
@ No need for a prior dimensionality reduction
o Comprehensibility

o An efficient algorithm based on numerical linear algebra

Limitations of MWCD-RDA:

o Contaminated multivariate normal data

The weights are assigned to individual observations

Variability not substantially different across variables

@ Intensive computations are required

Regularization parameters should be small
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Conclusions

@ Introduction
e SVM
o LDA
Robust LDA

Problems of common classifiers:
@ Various data formats
o Computational demands
@ Missing values
o Instability
@ Dimensionality reduction?
@ "No free lunch” theorems

@ Design issues (how many observations?)
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Conclusions

Machine learning:

Universal classifiers?

Linear separability for n < p is guaranteed!

SVM
e Too many support vectors
e —> overfitting
o No regularization

Complicated for K > 2 (voting scheme etc.)

Suboptimal solution

Interpretation

—> THANK YOU FOR YOUR ATTENTION <=

Jan Kalina
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