Towards Typed Higher-Order Description Logics

Martin Homola¹ <u>Ján Kľuka</u>¹ Vojtěch Svátek² Miroslav Vacura²

¹Comenius University, Bratislava, Slovakia

²University of Economics, Prague, Czech Rep.

Outline

Motivation

Typed Higher-Order DLs

Semantics

(Un)wanted Properties

Conclusions

Outline

Motivation

Typed Higher-Order DLs

Semantics

(Un)wanted Properties

Conclusions

Motivation

PURO background modelling language

- capture ontological distinctions in foreground models
- particular—universal distinction
- relationship—object distinction
- intended to use with LD vocabularies

Svátek et al. (OWLED 2013, K-CAP 2013)

Motivation: Example - Music Ontology

Motivation: Example - Music Ontology

Motivation: Desiderata

To capture PURO background models in a DL-like language and reason with them:

- ► Higher-order classes *B*-types
- ▶ Roles between entities of different orders \mathcal{B} -relations
- Homogeneity of
 - classes
 - role domains and ranges
- Suitable semantics
- ► *n*-ary roles

- ► Motik (2007)
- ▶ De Giacomo et al. (2009)

- ► Motik (2007)
- ▶ De Giacomo et al. (2009)
- N_a − set of names
- $\blacktriangleright \ \mathcal{I} = \left(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}, \mathit{C}^{\mathcal{I}}(\cdot), \mathit{R}^{\mathcal{I}}(\cdot)\right) \mathsf{HiLog}\text{-style interpretation}$

- ► Motik (2007)
- ▶ De Giacomo et al. (2009)
- N_a − set of names
- $ightharpoonup \mathcal{I} = \left(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}, C^{\mathcal{I}}(\cdot), R^{\mathcal{I}}(\cdot)\right)$ HiLog-style interpretation

$$\Delta^{\mathcal{I}}$$

- ► Motik (2007)
- ▶ De Giacomo et al. (2009)
- \triangleright N_a set of names
- $ightharpoonup \mathcal{I} = \left(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}, C^{\mathcal{I}}(\cdot), R^{\mathcal{I}}(\cdot)\right)$ HiLog-style interpretation

$$\Delta^{\mathcal{I}}$$
 $\dot{m{s}^{\mathcal{I}}}$ $\dot{m{b}^{\mathcal{I}}}$ $\dot{m{c}^{\mathcal{I}}}$

- ► Motik (2007)
- ▶ De Giacomo et al. (2009)
- $ightharpoonup N_a$ set of names
- $\blacktriangleright \ \mathcal{I} = \left(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}, C^{\mathcal{I}}(\cdot), R^{\mathcal{I}}(\cdot)\right) \mathsf{HiLog\text{-style}} \ \mathsf{interpretation}$

- ► Motik (2007)
- ▶ De Giacomo et al. (2009)
- ► N_a set of names
- $\blacktriangleright \ \mathcal{I} = \left(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}, C^{\mathcal{I}}(\cdot), R^{\mathcal{I}}(\cdot)\right) \mathsf{HiLog\text{-style}} \ \mathsf{interpretation}$

Outline

Motivation

Typed Higher-Order DLs

Semantics

(Un)wanted Properties

Conclusions

Typed DL Vocabulary

Typed DL vocabulary is a disjoint union of a countable number of countable sets:

- ▶ N_{C}^{t} , for $t \ge 0$, the set of concept names of type t $(N_{I} = N_{C}^{0}$, the set of individual names)
- ▶ N_{R}^{tu} , for t, u > 0, the set of role names between types t and u

Typed DL Vocabulary

Typed DL vocabulary is a disjoint union of a countable number of countable sets:

- ▶ N_{C}^{t} , for $t \ge 0$, the set of concept names of type t $(N_{I} = N_{C}^{0}$, the set of individual names)
- ▶ N_{R}^{tu} , for t, u > 0, the set of role names between types t and u

Notation:

- $ightharpoonup A^t, B^t, \ldots \in N_C^t$
- $ightharpoonup R^{tu}, S^{tu}, \ldots \in N_{\mathsf{R}}^{tu}$

Role Expressions in TH(SROIQ)

The set of tu-role expressions of $T\mathcal{H}(SROIQ)$ is recursively defined as the smallest set containing:

- ► R^{tu}
- ► R^{ut−}
- ▶ U^{tu}
- $S_1^{t_1u_1} \cdot S_2^{t_2u_2} \cdot \dots \cdot S_n^{t_nu_n}$, s.t. $t_1=t$, $u_n=u$, $u_i=t_{i+1}$ for all i given atomic role R^{tu} , tu- and t_iu_i -role expressions S^{tu} , $S_i^{t_iu_i}$, and t, u, t_i , $u_i \geq 0$

Concept Descriptions in TH(SROIQ)

The set of *t*-descriptions of $\mathcal{TH}(\mathcal{SROIQ})$ is recursively defined as the smallest set containing:

- $\rightarrow A^t$
- $ightharpoonup \neg C^t$
- $ightharpoonup C^t \sqcap D^t$
- $ightharpoonup \exists R^{tu}.C^{u}$
- $ightharpoonup
 angle n R^{tu}.C^{u}$
- ▶ $\exists R^{tt}$.Self
- $\blacktriangleright \{A^{t-1}\}$

given atomic concepts A^t and A^{t-1} , t- and u-descriptions C^t, D^t, C^u , tu- and tt-role expressions R^{tu}, R^{tt} , and t, u > 0

Concept Descriptions in TH(SROIQ)

The set of *t*-descriptions of $\mathcal{TH}(\mathcal{SROIQ})$ is recursively defined as the smallest set containing:

- $\rightarrow A^t$
- $ightharpoonup \neg C^t$
- $ightharpoonup C^t \sqcap D^t$
- → ∃R^{tu}.C^u
- $ightharpoonup
 angle n R^{tu}.C^{u}$
- ▶ $\exists R^{tt}$.Self
- $ightharpoonup \{A^{t-1}\}$

given atomic concepts A^t and A^{t-1} , t- and u-descriptions C^t , D^t , C^u , tu- and tt-role expressions R^{tu} , R^{tt} , and t, u > 0

Notation: $\top^t = A^t \sqcup \neg A^t$ for t > 0 and some $A^t \in N_C^t$.

Knowledge Bases in TH(SROIQ)

TH(SROIQ) knowledge base K is a finite set of axioms of the following forms:

- $ightharpoonup C^t \Box D^t$
- $ightharpoonup R^{tu} \sqsubseteq S^{tu}$
- ▶ Ref(R^{tu})
- ightharpoonup Dis(R^{tu}, S^{tu})
- $ightharpoonup A^{t-1}$: C^t
- $A^{t-1}, B^{u-1}: R^{tu}$
- ► A^{t-1} , B^{u-1} : $\neg R^{tu}$

given atomic concepts A^{t-1} , B^{u-1} , t-descriptions C^t , D^t , tu-role expressions R^{tu} , S^{tu} , and t, u > 0

Outline

Motivation

Typed Higher-Order DLs

Semantics

(Un)wanted Properties

Conclusions

HiLog-style Interpretations

HiLog-style interpretation is a triple $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}, \cdot^{\mathcal{E}})$ s.t.:

- $\blacktriangleright \ \Delta^{\mathcal{I}} = \biguplus_{t \geq 0} \Delta^{\mathcal{I}}_t \uplus \biguplus_{t,u \geq 0} \Delta^{\mathcal{I}}_{tu} \ \text{and} \ \Delta^{\mathcal{I}}_0 \neq \emptyset,$
- $lacksquare A^{t\,\mathcal{I}}\in\Delta_t^{\mathcal{I}}$, for $A^t\in \mathcal{N}_\mathsf{C}^t$ and $t\geq 0$
- lacksquare $R^{tu\,\mathcal{I}}\in\Delta^{\mathcal{I}}_{tu}$, for $R^{tu}\in N^{tu}_{\mathsf{R}}$ and t,u>0
- $lackbox{} c^{\mathcal{E}} \subseteq \Delta_{t-1}^{\mathcal{I}}$, for $c \in \Delta_t^{\mathcal{I}}$ and t > 0
- ▶ $r^{\mathcal{E}} \subseteq \Delta_{t-1}^{\mathcal{I}} \times \Delta_{u-1}^{\mathcal{I}}$, for $r \in \Delta_{tu}^{\mathcal{I}}$ and t, u > 0

HiLog-style Interpretations

HiLog-style interpretation is a triple $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}, \cdot^{\mathcal{E}})$ s.t.:

- $\blacktriangleright \ \Delta^{\mathcal{I}} = \biguplus_{t \geq 0} \Delta^{\mathcal{I}}_t \uplus \biguplus_{t,u \geq 0} \Delta^{\mathcal{I}}_{tu} \ \text{and} \ \Delta^{\mathcal{I}}_0 \neq \emptyset,$
- $lacksquare A^{t\,\mathcal{I}}\in\Delta_t^{\mathcal{I}}$, for $A^t\in \mathcal{N}_\mathsf{C}^t$ and $t\geq 0$
- lacksquare $R^{tu\,\mathcal{I}}\in\Delta^{\mathcal{I}}_{tu}$, for $R^{tu}\in N^{tu}_{\mathsf{R}}$ and t,u>0
- lacksquare $c^{\mathcal{E}}\subseteq \Delta_{t-1}^{\mathcal{I}}$, for $c\in \Delta_t^{\mathcal{I}}$ and t>0
- ▶ $r^{\mathcal{E}} \subseteq \Delta_{t-1}^{\mathcal{I}} \times \Delta_{u-1}^{\mathcal{I}}$, for $r \in \Delta_{tu}^{\mathcal{I}}$ and t, u > 0

Notation:

 $\blacktriangleright X^{\mathcal{E}} := X^{\mathcal{I}\mathcal{E}} = (X^{\mathcal{I}})^{\mathcal{E}}$ for atomic concepts and roles

HiLog-style Interpretations (cont.)

	2
X	$X^{\mathcal{E}}$
$\neg C^t$	$\Delta_{t-1}^{\mathcal{I}} \setminus C^{t\mathcal{E}}$
$C^t \sqcap D^t$	$C^{t\mathcal{E}}\cap D^{t\mathcal{E}}$
$\exists R^{tu}.C^{u}$	$\{x \mid \exists y. \langle x, y \rangle \in R^{tu \mathcal{E}} \land y \in C^{u \mathcal{E}}\}$
\geqslant n $S^{tu}.C^{u}$	$\{x \mid \sharp \{y \mid \langle x, y \rangle \in S^{tu \mathcal{E}}, \ y \in C^{u \mathcal{E}}\} \geq n\}$
$\exists S^{tt}.Self$	$\{x \mid \langle x, x \rangle \in S^{tt \mathcal{E}}\}$
$\{C^{t-1}\}$	$\{C^{t-1\mathcal{I}}\}$
R^{tu-}	$\{\langle y, x \rangle \mid \langle x, y \rangle \in R^{st \mathcal{E}} \}$
U^{tu}	$\Delta_{t-1}^{\mathcal{I}} imes \Delta_{u-1}^{\mathcal{I}}$
$R_1^{t_1u_1}\cdot \cdot \cdot \cdot R_n^{t_nu_n}$	$R_1^{t_1u_1}{}^{\mathcal{E}} \circ \cdots \circ R_n^{t_nu_n}{}^{\mathcal{E}}$

HiLog-style Satisfaction, Models

 $\mathcal{I} \models \phi$ depending on type of axiom ϕ as follows:

- $ightharpoonup \mathcal{I} \models C^t \sqsubseteq D^t \text{ if } C^{t\mathcal{E}} \subseteq D^{t\mathcal{E}}$
- $ightharpoonup \mathcal{I} \models R^{tu} \sqsubseteq S^{tu} \text{ if } R^{tu} \mathcal{E} \subseteq S^{tu} \mathcal{E}$
- ▶ $\mathcal{I} \models \mathsf{Ref}(R^{tu})$ if $R^{tu}^{\mathcal{E}}$ is a reflexive relation
- ▶ $\mathcal{I} \models \mathsf{Dis}(R^{tu}, S^{tu})$ if $R^{tu \mathcal{E}}$ and $S^{tu \mathcal{E}}$ are disjoint
- $ightharpoonup \mathcal{I} \models A^{t-1} \colon C^t \text{ if } A^{t-1} \in C^t \mathcal{E}$
- $ightharpoonup \mathcal{I} \models A^{t-1}, B^{u-1} \colon R^{tu} \text{ if } \langle A^{t-1\mathcal{I}}, B^{u-1\mathcal{I}} \rangle \in R^{tu\mathcal{E}}$
- $\blacktriangleright \ \mathcal{I} \models A^{t-1}, B^{u-1} \colon \neg R^{tu} \text{ if } \langle A^{t-1}\mathcal{I}, B^{u-1}\mathcal{I} \rangle \notin R^{tu}\mathcal{E}$

HiLog-style Satisfaction, Models

 $\mathcal{I} \models \phi$ depending on type of axiom ϕ as follows:

- $ightharpoonup \mathcal{I} \models C^t \sqsubseteq D^t \text{ if } C^{t\mathcal{E}} \subseteq D^{t\mathcal{E}}$
- $ightharpoonup \mathcal{I} \models R^{tu} \sqsubseteq S^{tu} \text{ if } R^{tu} \mathcal{E} \subseteq S^{tu} \mathcal{E}$
- $ightharpoonup \mathcal{I} \models \mathsf{Ref}(R^{tu})$ if $R^{tu}^{\mathcal{E}}$ is a reflexive relation
- ▶ $\mathcal{I} \models \mathsf{Dis}(R^{tu}, S^{tu})$ if $R^{tu \mathcal{E}}$ and $S^{tu \mathcal{E}}$ are disjoint
- $ightharpoonup \mathcal{I} \models A^{t-1} \colon C^t \text{ if } A^{t-1} \mathcal{I} \in C^t \mathcal{E}$
- $ightharpoonup \mathcal{I} \models A^{t-1}, B^{u-1} \colon R^{tu} \text{ if } \langle A^{t-1\mathcal{I}}, B^{u-1\mathcal{I}} \rangle \in R^{tu\mathcal{E}}$
- $\blacktriangleright \ \mathcal{I} \models A^{t-1}, B^{u-1} \colon \neg R^{tu} \text{ if } \langle A^{t-1}\mathcal{I}, B^{u-1}\mathcal{I} \rangle \notin R^{tu}\mathcal{E}$
- ▶ \mathcal{I} is a model of a KB \mathcal{K} if $\mathcal{I} \models \phi$ for all $\phi \in \mathcal{K}$

HiLog-style Satisfaction, Models

 $\mathcal{I} \models \phi$ depending on type of axiom ϕ as follows:

- $ightharpoonup \mathcal{I} \models C^t \sqsubseteq D^t \text{ if } C^{t\mathcal{E}} \subseteq D^{t\mathcal{E}}$
- $ightharpoonup \mathcal{I} \models R^{tu} \sqsubseteq S^{tu} \text{ if } R^{tu} \mathcal{E} \subseteq S^{tu} \mathcal{E}$
- $ightharpoonup \mathcal{I} \models \mathsf{Ref}(R^{tu}) \text{ if } R^{tu}^{\mathcal{E}} \text{ is a reflexive relation}$
- ▶ $\mathcal{I} \models \mathsf{Dis}(R^{tu}, S^{tu})$ if $R^{tu \mathcal{E}}$ and $S^{tu \mathcal{E}}$ are disjoint
- $ightharpoonup \mathcal{I} \models A^{t-1} \colon C^t \text{ if } A^{t-1} \mathcal{I} \in C^t \mathcal{E}$
- $\mathcal{I} \models A^{t-1}, B^{u-1} \colon R^{tu} \text{ if } \langle A^{t-1}\mathcal{I}, B^{u-1}\mathcal{I} \rangle \in R^{tu}\mathcal{E}$
- $ightharpoonup \mathcal{I} \models A^{t-1}, B^{u-1} \colon \neg R^{tu} \text{ if } \langle A^{t-1\mathcal{I}}, B^{u-1\mathcal{I}} \rangle \notin R^{tu\mathcal{E}}$
- ▶ \mathcal{I} is a model of a KB \mathcal{K} if $\mathcal{I} \models \phi$ for all $\phi \in \mathcal{K}$
- K is satisfiable if it has a model

Outline

Motivation

Typed Higher-Order DLs

Semantics

(Un)wanted Properties

Conclusions

Intension vs. Extension of a Class

So, we now have both, the intension and the extension for (atomic) classes. We also have two notions of "equality":

- ▶ intensional equality: $A^t = B^t$ iff $\{A^t\} \equiv \{B^t\}$ iff $A^{t\mathcal{I}} = B^{t\mathcal{I}}$
- extensional equivalence: $A^t \equiv B^t$ iff $A^{tIE} = B^{tIE}$

Intension vs. Extension of a Class

So, we now have both, the intension and the extension for (atomic) classes. We also have two notions of "equality":

- ▶ intensional equality: $A^t = B^t$ iff $\{A^t\} \equiv \{B^t\}$ iff $A^{t\mathcal{I}} = B^{t\mathcal{I}}$
- extensional equivalence: $A^t \equiv B^t$ iff $A^{tIE} = B^{tIE}$

Intensional regularity:

$$\mathcal{K} \models A^t = B^t \implies \mathcal{K} \models A^t \equiv B^t$$

Intension vs. Extension of a Class

So, we now have both, the intension and the extension for (atomic) classes. We also have two notions of "equality":

- ▶ intensional equality: $A^t = B^t$ iff $\{A^t\} \equiv \{B^t\}$ iff $A^{t\mathcal{I}} = B^{t\mathcal{I}}$
- extensional equivalence: $A^t \equiv B^t$ iff $A^{t\mathcal{I}\mathcal{E}} = B^{t\mathcal{I}\mathcal{E}}$

Intensional regularity:

$$\mathcal{K} \models A^t = B^t \implies \mathcal{K} \models A^t \equiv B^t$$

Extensionality:

$$\mathcal{K} \models A^t \equiv B^t \implies \mathcal{K} \models A^t = B^t$$

Intensional Regularity

Example (Motik 2007) Consider the knowledge base \mathcal{K} :

 $\begin{aligned} \mathsf{Aquila}^1 &= \mathsf{Eagle}^1 \\ \mathsf{Harry}^0 \colon \mathsf{Eagle}^1 \\ \mathsf{Harry}^0 \colon \neg \mathsf{Aquila}^1 \end{aligned}$

If we see Aquila and Eagle as two different names for the same class ${\cal K}$ should be inconsistent

Intensional Regularity

Example (Motik 2007)

Consider the knowledge base K:

 $\begin{aligned} \mathsf{Aquila}^1 &= \mathsf{Eagle}^1 \\ \mathsf{Harry}^0 \colon \mathsf{Eagle}^1 \\ \mathsf{Harry}^0 \colon \neg \mathsf{Aquila}^1 \end{aligned}$

If we see Aquila and Eagle as two different names for the same class $\mathcal K$ should be inconsistent

Proposition

The HiLog-style semantics of $TH(\mathcal{L})$ has the intensional regularity property.

Extensionality

Example

Consider the knowledge base \mathcal{K} :

 $\begin{aligned} \mathsf{Aquila}^1 &\equiv \mathsf{Eagle}^1 \\ \mathsf{Eagle}^1 \colon \mathsf{Deprecated}^2 \end{aligned}$

Most likely we don't want to derive that the other concept is deprecated as well ($\mathcal{K} \models \mathsf{Aquila}^1$: Deprecated² should not hold)

Extensionality

Example

Consider the knowledge base \mathcal{K} :

$$Aquila^1 \equiv Eagle^1$$

$$Eagle^1 : Deprecated^2$$

Most likely we don't want to derive that the other concept is deprecated as well ($\mathcal{K} \models \mathsf{Aquila}^1$: Deprecated² should not hold)

Proposition

The HiLog-style semantics of $TH(\mathcal{L})$ does not have the extensionality property.

Extensionality

Example

Consider the knowledge base \mathcal{K} :

$$Aquila^1 \equiv Eagle^1$$

 $Eagle^1 : Deprecated^2$

Most likely we don't want to derive that the other concept is deprecated as well ($\mathcal{K} \models \mathsf{Aquila}^1$: Deprecated² should not hold)

Proposition

The HiLog-style semantics of $TH(\mathcal{L})$ does not have the extensionality property.

Proposition

A modified HiLog-style semantics which requires injective $\cdot^{\mathcal{E}}$ has the extensionality property.

Decidability of TH(ALCHOIQ)

▶ Assume K in TH(ALCHOIQ) using vocabulary

$$\Sigma = \biguplus_{0 \le t < m} N_{\mathsf{C}}^t \ \uplus \ \biguplus_{0 < t, u < m} N_{\mathsf{R}}^{tu}$$

▶ Reduce \mathcal{K} into $\Upsilon(\mathcal{K})$ in $\mathcal{ALCHOIQ}$ with meta modelling (Motik 2007) using vocabulary

$$N_a = \Sigma \uplus \{ \top^t \mid 0 < t \le m+1 \} \uplus \{ \top^{tu} \mid 0 < t, u \le m \}$$

where all \top^t and \top^{tu} are new concepts that will emulate the domain slices

Decidability of TH(ALCHOIQ) (cont.)

$$\Upsilon(\mathcal{K}) = \mathsf{TB}(\mathcal{K}) \cup \mathsf{TC}(\mathcal{K})$$

- ▶ TB(\mathcal{K}), type-bounded version of \mathcal{K} , obtained from \mathcal{K} :
 - replace each occurrence of $\neg C^t$ in \mathcal{K} with $\top^t \sqcap \neg C^t$
- ► TC(K) is set of typing constraints:
 - Domain disjointness:
 - ightharpoonup op op op op if $t \neq u$

 - $\blacktriangleright \ \, \top^{tu} \sqsubseteq \neg \top^v$
 - Intension typing:
 - \triangleright $A^{t-1}: \top^t$
 - $ightharpoonup R^{tu}$: \top^{tu}
 - ► Extension typing:
 - $ightharpoonup A^t \Box \top^t$
 - $ightharpoonup \exists R^{tu}. \top \Box \top^t \text{ and } \top \Box \forall R^{tu}. \top^u$

for all $0 < t, u, v, w \le m$, and for all A^{t-1} , A^t , R^{tu} in K

Decidability of TH(ALCHOIQ) (cont.)

Proposition

Let K be a TH(ALCHOIQ) KB. Then K is satisfiable in the HiLog-style semantics iff $\Upsilon(K)$ is ν -satisfiable.

Corollary

Satisfiability in TH(ALCHOIQ) in the HiLog-style semantics is decidable in non-deterministic exponential time.

Outline

Motivation

Typed Higher-Order DLs

Semantics

(Un)wanted Properties

Conclusions

Conclusions

- ► Typed higher-order DLs
 - Strictly separated hierarchy of types
 - Inter-type roles with homogeneous domains and ranges
- Decidability of TH(ALCHOIQ), relation to non-typed higher-order DLs
- Useful for:
 - Expressing background models of LD vocabularies
 - Other meta-modelling applications (hopefully)