Towards Typed Higher-Order Description Logics Martin Homola¹ <u>Ján Kľuka</u>¹ Vojtěch Svátek² Miroslav Vacura² ¹Comenius University, Bratislava, Slovakia ²University of Economics, Prague, Czech Rep. #### Outline Motivation Typed Higher-Order DLs **Semantics** (Un)wanted Properties Conclusions ### Outline #### Motivation Typed Higher-Order DLs Semantics (Un)wanted Properties Conclusions #### Motivation #### PURO background modelling language - capture ontological distinctions in foreground models - particular—universal distinction - relationship—object distinction - intended to use with LD vocabularies Svátek et al. (OWLED 2013, K-CAP 2013) ## Motivation: Example - Music Ontology ## Motivation: Example - Music Ontology ### Motivation: Desiderata To capture PURO background models in a DL-like language and reason with them: - ► Higher-order classes *B*-types - ▶ Roles between entities of different orders \mathcal{B} -relations - Homogeneity of - classes - role domains and ranges - Suitable semantics - ► *n*-ary roles - ► Motik (2007) - ▶ De Giacomo et al. (2009) - ► Motik (2007) - ▶ De Giacomo et al. (2009) - N_a − set of names - $\blacktriangleright \ \mathcal{I} = \left(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}, \mathit{C}^{\mathcal{I}}(\cdot), \mathit{R}^{\mathcal{I}}(\cdot)\right) \mathsf{HiLog}\text{-style interpretation}$ - ► Motik (2007) - ▶ De Giacomo et al. (2009) - N_a − set of names - $ightharpoonup \mathcal{I} = \left(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}, C^{\mathcal{I}}(\cdot), R^{\mathcal{I}}(\cdot)\right)$ HiLog-style interpretation $$\Delta^{\mathcal{I}}$$ - ► Motik (2007) - ▶ De Giacomo et al. (2009) - \triangleright N_a set of names - $ightharpoonup \mathcal{I} = \left(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}, C^{\mathcal{I}}(\cdot), R^{\mathcal{I}}(\cdot)\right)$ HiLog-style interpretation $$\Delta^{\mathcal{I}}$$ $\dot{m{s}^{\mathcal{I}}}$ $\dot{m{b}^{\mathcal{I}}}$ $\dot{m{c}^{\mathcal{I}}}$ - ► Motik (2007) - ▶ De Giacomo et al. (2009) - $ightharpoonup N_a$ set of names - $\blacktriangleright \ \mathcal{I} = \left(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}, C^{\mathcal{I}}(\cdot), R^{\mathcal{I}}(\cdot)\right) \mathsf{HiLog\text{-style}} \ \mathsf{interpretation}$ - ► Motik (2007) - ▶ De Giacomo et al. (2009) - ► N_a set of names - $\blacktriangleright \ \mathcal{I} = \left(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}, C^{\mathcal{I}}(\cdot), R^{\mathcal{I}}(\cdot)\right) \mathsf{HiLog\text{-style}} \ \mathsf{interpretation}$ ### Outline Motivation Typed Higher-Order DLs Semantics (Un)wanted Properties Conclusions ## Typed DL Vocabulary Typed DL vocabulary is a disjoint union of a countable number of countable sets: - ▶ N_{C}^{t} , for $t \ge 0$, the set of concept names of type t $(N_{I} = N_{C}^{0}$, the set of individual names) - ▶ N_{R}^{tu} , for t, u > 0, the set of role names between types t and u ## Typed DL Vocabulary Typed DL vocabulary is a disjoint union of a countable number of countable sets: - ▶ N_{C}^{t} , for $t \ge 0$, the set of concept names of type t $(N_{I} = N_{C}^{0}$, the set of individual names) - ▶ N_{R}^{tu} , for t, u > 0, the set of role names between types t and u #### Notation: - $ightharpoonup A^t, B^t, \ldots \in N_C^t$ - $ightharpoonup R^{tu}, S^{tu}, \ldots \in N_{\mathsf{R}}^{tu}$ # Role Expressions in TH(SROIQ) The set of tu-role expressions of $T\mathcal{H}(SROIQ)$ is recursively defined as the smallest set containing: - ► R^{tu} - ► R^{ut−} - ▶ U^{tu} - $S_1^{t_1u_1} \cdot S_2^{t_2u_2} \cdot \dots \cdot S_n^{t_nu_n}$, s.t. $t_1=t$, $u_n=u$, $u_i=t_{i+1}$ for all i given atomic role R^{tu} , tu- and t_iu_i -role expressions S^{tu} , $S_i^{t_iu_i}$, and t, u, t_i , $u_i \geq 0$ # Concept Descriptions in TH(SROIQ) The set of *t*-descriptions of $\mathcal{TH}(\mathcal{SROIQ})$ is recursively defined as the smallest set containing: - $\rightarrow A^t$ - $ightharpoonup \neg C^t$ - $ightharpoonup C^t \sqcap D^t$ - $ightharpoonup \exists R^{tu}.C^{u}$ - $ightharpoonup angle n R^{tu}.C^{u}$ - ▶ $\exists R^{tt}$.Self - $\blacktriangleright \{A^{t-1}\}$ given atomic concepts A^t and A^{t-1} , t- and u-descriptions C^t, D^t, C^u , tu- and tt-role expressions R^{tu}, R^{tt} , and t, u > 0 # Concept Descriptions in TH(SROIQ) The set of *t*-descriptions of $\mathcal{TH}(\mathcal{SROIQ})$ is recursively defined as the smallest set containing: - $\rightarrow A^t$ - $ightharpoonup \neg C^t$ - $ightharpoonup C^t \sqcap D^t$ - → ∃R^{tu}.C^u - $ightharpoonup angle n R^{tu}.C^{u}$ - ▶ $\exists R^{tt}$.Self - $ightharpoonup \{A^{t-1}\}$ given atomic concepts A^t and A^{t-1} , t- and u-descriptions C^t , D^t , C^u , tu- and tt-role expressions R^{tu} , R^{tt} , and t, u > 0 Notation: $\top^t = A^t \sqcup \neg A^t$ for t > 0 and some $A^t \in N_C^t$. # Knowledge Bases in TH(SROIQ) TH(SROIQ) knowledge base K is a finite set of axioms of the following forms: - $ightharpoonup C^t \Box D^t$ - $ightharpoonup R^{tu} \sqsubseteq S^{tu}$ - ▶ Ref(R^{tu}) - ightharpoonup Dis(R^{tu}, S^{tu}) - $ightharpoonup A^{t-1}$: C^t - $A^{t-1}, B^{u-1}: R^{tu}$ - ► A^{t-1} , B^{u-1} : $\neg R^{tu}$ given atomic concepts A^{t-1} , B^{u-1} , t-descriptions C^t , D^t , tu-role expressions R^{tu} , S^{tu} , and t, u > 0 ### Outline Motivation Typed Higher-Order DLs **Semantics** (Un)wanted Properties Conclusions ## HiLog-style Interpretations HiLog-style interpretation is a triple $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}, \cdot^{\mathcal{E}})$ s.t.: - $\blacktriangleright \ \Delta^{\mathcal{I}} = \biguplus_{t \geq 0} \Delta^{\mathcal{I}}_t \uplus \biguplus_{t,u \geq 0} \Delta^{\mathcal{I}}_{tu} \ \text{and} \ \Delta^{\mathcal{I}}_0 \neq \emptyset,$ - $lacksquare A^{t\,\mathcal{I}}\in\Delta_t^{\mathcal{I}}$, for $A^t\in \mathcal{N}_\mathsf{C}^t$ and $t\geq 0$ - lacksquare $R^{tu\,\mathcal{I}}\in\Delta^{\mathcal{I}}_{tu}$, for $R^{tu}\in N^{tu}_{\mathsf{R}}$ and t,u>0 - $lackbox{} c^{\mathcal{E}} \subseteq \Delta_{t-1}^{\mathcal{I}}$, for $c \in \Delta_t^{\mathcal{I}}$ and t > 0 - ▶ $r^{\mathcal{E}} \subseteq \Delta_{t-1}^{\mathcal{I}} \times \Delta_{u-1}^{\mathcal{I}}$, for $r \in \Delta_{tu}^{\mathcal{I}}$ and t, u > 0 ## HiLog-style Interpretations HiLog-style interpretation is a triple $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}, \cdot^{\mathcal{E}})$ s.t.: - $\blacktriangleright \ \Delta^{\mathcal{I}} = \biguplus_{t \geq 0} \Delta^{\mathcal{I}}_t \uplus \biguplus_{t,u \geq 0} \Delta^{\mathcal{I}}_{tu} \ \text{and} \ \Delta^{\mathcal{I}}_0 \neq \emptyset,$ - $lacksquare A^{t\,\mathcal{I}}\in\Delta_t^{\mathcal{I}}$, for $A^t\in \mathcal{N}_\mathsf{C}^t$ and $t\geq 0$ - lacksquare $R^{tu\,\mathcal{I}}\in\Delta^{\mathcal{I}}_{tu}$, for $R^{tu}\in N^{tu}_{\mathsf{R}}$ and t,u>0 - lacksquare $c^{\mathcal{E}}\subseteq \Delta_{t-1}^{\mathcal{I}}$, for $c\in \Delta_t^{\mathcal{I}}$ and t>0 - ▶ $r^{\mathcal{E}} \subseteq \Delta_{t-1}^{\mathcal{I}} \times \Delta_{u-1}^{\mathcal{I}}$, for $r \in \Delta_{tu}^{\mathcal{I}}$ and t, u > 0 #### Notation: $\blacktriangleright X^{\mathcal{E}} := X^{\mathcal{I}\mathcal{E}} = (X^{\mathcal{I}})^{\mathcal{E}}$ for atomic concepts and roles # HiLog-style Interpretations (cont.) | | 2 | |--|--| | X | $X^{\mathcal{E}}$ | | $\neg C^t$ | $\Delta_{t-1}^{\mathcal{I}} \setminus C^{t\mathcal{E}}$ | | $C^t \sqcap D^t$ | $C^{t\mathcal{E}}\cap D^{t\mathcal{E}}$ | | $\exists R^{tu}.C^{u}$ | $\{x \mid \exists y. \langle x, y \rangle \in R^{tu \mathcal{E}} \land y \in C^{u \mathcal{E}}\}$ | | \geqslant n $S^{tu}.C^{u}$ | $\{x \mid \sharp \{y \mid \langle x, y \rangle \in S^{tu \mathcal{E}}, \ y \in C^{u \mathcal{E}}\} \geq n\}$ | | $\exists S^{tt}.Self$ | $\{x \mid \langle x, x \rangle \in S^{tt \mathcal{E}}\}$ | | $\{C^{t-1}\}$ | $\{C^{t-1\mathcal{I}}\}$ | | R^{tu-} | $\{\langle y, x \rangle \mid \langle x, y \rangle \in R^{st \mathcal{E}} \}$ | | U^{tu} | $\Delta_{t-1}^{\mathcal{I}} imes \Delta_{u-1}^{\mathcal{I}}$ | | $R_1^{t_1u_1}\cdot \cdot \cdot \cdot R_n^{t_nu_n}$ | $R_1^{t_1u_1}{}^{\mathcal{E}} \circ \cdots \circ R_n^{t_nu_n}{}^{\mathcal{E}}$ | # HiLog-style Satisfaction, Models $\mathcal{I} \models \phi$ depending on type of axiom ϕ as follows: - $ightharpoonup \mathcal{I} \models C^t \sqsubseteq D^t \text{ if } C^{t\mathcal{E}} \subseteq D^{t\mathcal{E}}$ - $ightharpoonup \mathcal{I} \models R^{tu} \sqsubseteq S^{tu} \text{ if } R^{tu} \mathcal{E} \subseteq S^{tu} \mathcal{E}$ - ▶ $\mathcal{I} \models \mathsf{Ref}(R^{tu})$ if $R^{tu}^{\mathcal{E}}$ is a reflexive relation - ▶ $\mathcal{I} \models \mathsf{Dis}(R^{tu}, S^{tu})$ if $R^{tu \mathcal{E}}$ and $S^{tu \mathcal{E}}$ are disjoint - $ightharpoonup \mathcal{I} \models A^{t-1} \colon C^t \text{ if } A^{t-1} \in C^t \mathcal{E}$ - $ightharpoonup \mathcal{I} \models A^{t-1}, B^{u-1} \colon R^{tu} \text{ if } \langle A^{t-1\mathcal{I}}, B^{u-1\mathcal{I}} \rangle \in R^{tu\mathcal{E}}$ - $\blacktriangleright \ \mathcal{I} \models A^{t-1}, B^{u-1} \colon \neg R^{tu} \text{ if } \langle A^{t-1}\mathcal{I}, B^{u-1}\mathcal{I} \rangle \notin R^{tu}\mathcal{E}$ # HiLog-style Satisfaction, Models $\mathcal{I} \models \phi$ depending on type of axiom ϕ as follows: - $ightharpoonup \mathcal{I} \models C^t \sqsubseteq D^t \text{ if } C^{t\mathcal{E}} \subseteq D^{t\mathcal{E}}$ - $ightharpoonup \mathcal{I} \models R^{tu} \sqsubseteq S^{tu} \text{ if } R^{tu} \mathcal{E} \subseteq S^{tu} \mathcal{E}$ - $ightharpoonup \mathcal{I} \models \mathsf{Ref}(R^{tu})$ if $R^{tu}^{\mathcal{E}}$ is a reflexive relation - ▶ $\mathcal{I} \models \mathsf{Dis}(R^{tu}, S^{tu})$ if $R^{tu \mathcal{E}}$ and $S^{tu \mathcal{E}}$ are disjoint - $ightharpoonup \mathcal{I} \models A^{t-1} \colon C^t \text{ if } A^{t-1} \mathcal{I} \in C^t \mathcal{E}$ - $ightharpoonup \mathcal{I} \models A^{t-1}, B^{u-1} \colon R^{tu} \text{ if } \langle A^{t-1\mathcal{I}}, B^{u-1\mathcal{I}} \rangle \in R^{tu\mathcal{E}}$ - $\blacktriangleright \ \mathcal{I} \models A^{t-1}, B^{u-1} \colon \neg R^{tu} \text{ if } \langle A^{t-1}\mathcal{I}, B^{u-1}\mathcal{I} \rangle \notin R^{tu}\mathcal{E}$ - ▶ \mathcal{I} is a model of a KB \mathcal{K} if $\mathcal{I} \models \phi$ for all $\phi \in \mathcal{K}$ # HiLog-style Satisfaction, Models $\mathcal{I} \models \phi$ depending on type of axiom ϕ as follows: - $ightharpoonup \mathcal{I} \models C^t \sqsubseteq D^t \text{ if } C^{t\mathcal{E}} \subseteq D^{t\mathcal{E}}$ - $ightharpoonup \mathcal{I} \models R^{tu} \sqsubseteq S^{tu} \text{ if } R^{tu} \mathcal{E} \subseteq S^{tu} \mathcal{E}$ - $ightharpoonup \mathcal{I} \models \mathsf{Ref}(R^{tu}) \text{ if } R^{tu}^{\mathcal{E}} \text{ is a reflexive relation}$ - ▶ $\mathcal{I} \models \mathsf{Dis}(R^{tu}, S^{tu})$ if $R^{tu \mathcal{E}}$ and $S^{tu \mathcal{E}}$ are disjoint - $ightharpoonup \mathcal{I} \models A^{t-1} \colon C^t \text{ if } A^{t-1} \mathcal{I} \in C^t \mathcal{E}$ - $\mathcal{I} \models A^{t-1}, B^{u-1} \colon R^{tu} \text{ if } \langle A^{t-1}\mathcal{I}, B^{u-1}\mathcal{I} \rangle \in R^{tu}\mathcal{E}$ - $ightharpoonup \mathcal{I} \models A^{t-1}, B^{u-1} \colon \neg R^{tu} \text{ if } \langle A^{t-1\mathcal{I}}, B^{u-1\mathcal{I}} \rangle \notin R^{tu\mathcal{E}}$ - ▶ \mathcal{I} is a model of a KB \mathcal{K} if $\mathcal{I} \models \phi$ for all $\phi \in \mathcal{K}$ - K is satisfiable if it has a model ### Outline Motivation Typed Higher-Order DLs **Semantics** (Un)wanted Properties Conclusions #### Intension vs. Extension of a Class So, we now have both, the intension and the extension for (atomic) classes. We also have two notions of "equality": - ▶ intensional equality: $A^t = B^t$ iff $\{A^t\} \equiv \{B^t\}$ iff $A^{t\mathcal{I}} = B^{t\mathcal{I}}$ - extensional equivalence: $A^t \equiv B^t$ iff $A^{tIE} = B^{tIE}$ #### Intension vs. Extension of a Class So, we now have both, the intension and the extension for (atomic) classes. We also have two notions of "equality": - ▶ intensional equality: $A^t = B^t$ iff $\{A^t\} \equiv \{B^t\}$ iff $A^{t\mathcal{I}} = B^{t\mathcal{I}}$ - extensional equivalence: $A^t \equiv B^t$ iff $A^{tIE} = B^{tIE}$ #### Intensional regularity: $$\mathcal{K} \models A^t = B^t \implies \mathcal{K} \models A^t \equiv B^t$$ #### Intension vs. Extension of a Class So, we now have both, the intension and the extension for (atomic) classes. We also have two notions of "equality": - ▶ intensional equality: $A^t = B^t$ iff $\{A^t\} \equiv \{B^t\}$ iff $A^{t\mathcal{I}} = B^{t\mathcal{I}}$ - extensional equivalence: $A^t \equiv B^t$ iff $A^{t\mathcal{I}\mathcal{E}} = B^{t\mathcal{I}\mathcal{E}}$ #### Intensional regularity: $$\mathcal{K} \models A^t = B^t \implies \mathcal{K} \models A^t \equiv B^t$$ #### Extensionality: $$\mathcal{K} \models A^t \equiv B^t \implies \mathcal{K} \models A^t = B^t$$ ## Intensional Regularity Example (Motik 2007) Consider the knowledge base \mathcal{K} : $\begin{aligned} \mathsf{Aquila}^1 &= \mathsf{Eagle}^1 \\ \mathsf{Harry}^0 \colon \mathsf{Eagle}^1 \\ \mathsf{Harry}^0 \colon \neg \mathsf{Aquila}^1 \end{aligned}$ If we see Aquila and Eagle as two different names for the same class ${\cal K}$ should be inconsistent ## Intensional Regularity Example (Motik 2007) Consider the knowledge base K: $\begin{aligned} \mathsf{Aquila}^1 &= \mathsf{Eagle}^1 \\ \mathsf{Harry}^0 \colon \mathsf{Eagle}^1 \\ \mathsf{Harry}^0 \colon \neg \mathsf{Aquila}^1 \end{aligned}$ If we see Aquila and Eagle as two different names for the same class $\mathcal K$ should be inconsistent ### Proposition The HiLog-style semantics of $TH(\mathcal{L})$ has the intensional regularity property. ## Extensionality Example Consider the knowledge base \mathcal{K} : $\begin{aligned} \mathsf{Aquila}^1 &\equiv \mathsf{Eagle}^1 \\ \mathsf{Eagle}^1 \colon \mathsf{Deprecated}^2 \end{aligned}$ Most likely we don't want to derive that the other concept is deprecated as well ($\mathcal{K} \models \mathsf{Aquila}^1$: Deprecated² should not hold) ## Extensionality ### Example Consider the knowledge base \mathcal{K} : $$Aquila^1 \equiv Eagle^1$$ $$Eagle^1 : Deprecated^2$$ Most likely we don't want to derive that the other concept is deprecated as well ($\mathcal{K} \models \mathsf{Aquila}^1$: Deprecated² should not hold) ### Proposition The HiLog-style semantics of $TH(\mathcal{L})$ does not have the extensionality property. ## Extensionality #### Example Consider the knowledge base \mathcal{K} : $$Aquila^1 \equiv Eagle^1$$ $Eagle^1 : Deprecated^2$ Most likely we don't want to derive that the other concept is deprecated as well ($\mathcal{K} \models \mathsf{Aquila}^1$: Deprecated² should not hold) ### Proposition The HiLog-style semantics of $TH(\mathcal{L})$ does not have the extensionality property. ### Proposition A modified HiLog-style semantics which requires injective $\cdot^{\mathcal{E}}$ has the extensionality property. # Decidability of TH(ALCHOIQ) ▶ Assume K in TH(ALCHOIQ) using vocabulary $$\Sigma = \biguplus_{0 \le t < m} N_{\mathsf{C}}^t \ \uplus \ \biguplus_{0 < t, u < m} N_{\mathsf{R}}^{tu}$$ ▶ Reduce \mathcal{K} into $\Upsilon(\mathcal{K})$ in $\mathcal{ALCHOIQ}$ with meta modelling (Motik 2007) using vocabulary $$N_a = \Sigma \uplus \{ \top^t \mid 0 < t \le m+1 \} \uplus \{ \top^{tu} \mid 0 < t, u \le m \}$$ where all \top^t and \top^{tu} are new concepts that will emulate the domain slices # Decidability of TH(ALCHOIQ) (cont.) $$\Upsilon(\mathcal{K}) = \mathsf{TB}(\mathcal{K}) \cup \mathsf{TC}(\mathcal{K})$$ - ▶ TB(\mathcal{K}), type-bounded version of \mathcal{K} , obtained from \mathcal{K} : - replace each occurrence of $\neg C^t$ in \mathcal{K} with $\top^t \sqcap \neg C^t$ - ► TC(K) is set of typing constraints: - Domain disjointness: - ightharpoonup op op op op if $t \neq u$ - $\blacktriangleright \ \, \top^{tu} \sqsubseteq \neg \top^v$ - Intension typing: - \triangleright $A^{t-1}: \top^t$ - $ightharpoonup R^{tu}$: \top^{tu} - ► Extension typing: - $ightharpoonup A^t \Box \top^t$ - $ightharpoonup \exists R^{tu}. \top \Box \top^t \text{ and } \top \Box \forall R^{tu}. \top^u$ for all $0 < t, u, v, w \le m$, and for all A^{t-1} , A^t , R^{tu} in K # Decidability of TH(ALCHOIQ) (cont.) #### Proposition Let K be a TH(ALCHOIQ) KB. Then K is satisfiable in the HiLog-style semantics iff $\Upsilon(K)$ is ν -satisfiable. #### Corollary Satisfiability in TH(ALCHOIQ) in the HiLog-style semantics is decidable in non-deterministic exponential time. ### Outline Motivation Typed Higher-Order DLs **Semantics** (Un)wanted Properties Conclusions #### Conclusions - ► Typed higher-order DLs - Strictly separated hierarchy of types - Inter-type roles with homogeneous domains and ranges - Decidability of TH(ALCHOIQ), relation to non-typed higher-order DLs - Useful for: - Expressing background models of LD vocabularies - Other meta-modelling applications (hopefully)