

Implementation of Text Mining Services in the KP-Lab Project

11/12/08 Marek Schmidt

Knowledge Practices

- Knowledge Practice
 - An innovative process, routine, or procedure of working with knowledge. Knowledge practices represent socially constituted, rather than merely individual activities.
- Trialogical Learning
 - Learners are collaboratively develop, transform, or create shared objects in a systematic fashion.
 - Concentrates on the interaction through developing these common, concrete objects

Concept Mapping Knowledge Practice

- Concept Map
 - Diagram showing the relationships among concepts.
 - Graphical tools for organizing and representing knowledge.
 - Used to stimulate the generation of ideas, to aid creativity.
- Usage Scenario
 - Students are given research materials on a given topic, asked to collaboratively create a concept map.
 - Learning is stimulated by discussions of/process of creation/the concept map itself

Application of Text Mining Services

- Service shall provide suggestions for
 - New concepts
 - New related/similar concepts
- Application of Ontology Learning methods

General Architecture

Text Mining Services

- Classification Service
- Clustering Service
- Ontology Learning Service
 - findConceptCandidates ()
 - findRelationCandidates (concepts)

Ontology Learning Services

- 1. Automatic Term Recognition
- 2. Syntactic Patterns
- 3. Statistical Methods for Similarity

Automatic Term Recognition

- 1. Minipar Parser
 - Produces POS tags and a dependency tree
- 2. Term candidates extraction from the dependency tree
 - Set of patterns (nouns, nouns with modifiers)
 - All sub-terms are extracted
- 3. Scoring of term candidates
 - Experimented with several scoring functions
 - Termhood (Tfldf, Weirdness, LR test), Unithood (C/NC-Value)
 - Background frequencies from general corpus (Gigaword)

Syntactic Patterns

- 1. General idea
 - Map semantic relations as a set of syntactic patterns (like Hearst Patterns)
 - Create set of patterns from seed patterns by computing paraphrases
- 2. Result
 - Does not work very well in general setting
 - Keep patterns for is-a and general S-V-O, S-V-P-P

Statistical Methods for Similarity

- 1. Extract Co-occurrences on different levels
 - Different levels produce different types of relatedness
 - Syntactic term to syntactic features (modifiers, verb, subject, object, ...)
 - Sentence, Document term sentence / term document matrix
- 2. Compute similarity (Dekang Lin)

 $sim(A,B) = \frac{\log P(common(A,B))}{\log P(description(A,B))}$

Lin Similarity of Words

$$sim(t_1, t_2) = \frac{2 \times I(F(t_1) \cap F(t_2))}{I(F(t_1)) + I(F(t_2))}$$

$$I(S) = -\sum_{f \in S} \log P(f)$$

$$P_{MLE}(f) = \frac{\left|\left\{t \mid f \in F(t)\right\}\right|}{\left|\left\{t\right\}\right|}$$

Similar Background Terms

- We compute similarity also on background terms
 - To help define the meaning of some new domain-specific term

Extracting slipped terms

- Problem
 - User asks for related terms to term not extracted during preprocessing
- Solution
 - 1. Fulltext index on sentences
 - 2. Match all verbatim occurrences of the term
 - 3. Extract features from these occurences

Implementation

- Extraction Core
 - Python, Minipar, sqlite, Xapian
 - Java, GATE, text2onto
- Web Service front-end
 - JBoss Seam
 - Aperture (Nepomuk, Content Extraction)

Evaluation

- Automatic Term Recognition
 - retrieval of user-annotated keywords (LT4el, Genia)
- Related Terms
 - Problematic
 - User level concept mapping tools not ready yet

References

- Dekang Lin
 - An Information-Theoretic Definition of Similarity (1998)