
31.3.2011 1Petr Křemen (petr.kremen@fel.cvut.cz), KBSS

Ontological Reasoning
in

Information Systems

Petr Křemen
petr.kremen@fel.cvut.cz

31.3.2011 2Petr Křemen (petr.kremen@fel.cvut.cz), KBSS

Outline

● Design of information systems based on
ontologies
● Integrity Constraints in OWL 2
● Tool: JOPA
● Application: StruFail system

● Expressive Queries in OWL 2
● SPARQL-DLNOT and its visualization
● Tool: OWL2Query

31.3.2011 3Petr Křemen (petr.kremen@fel.cvut.cz), KBSS

Motivation

● relational databases requires stable data
model to be stable.

● ontologies suitable for rapidly changing
domains with heterogenous knowledge

● Basic question for the second scenario:

How to develop an application on top of an
ontology ?

31.3.2011 4Petr Křemen (petr.kremen@fel.cvut.cz), KBSS

Options for an ontology-backed IS

● a generic „ontology editor/browser“
● The design does not reflect the structure of the

particular ontology at all
● like Protégé, NeON Toolkit, TopBraid Composer, …

● most IS have domain-specific business logic
● Specific user interfaces
● Complex domain-specific computations

31.3.2011 5Petr Křemen (petr.kremen@fel.cvut.cz), KBSS

Ontology access in IS (in Java)

● low-level (type 1)
● e.g. OWLAPI, Jena, …
● Their use in targeted information systems produces

lots of boiler-plate code

… error-prone and hard to maintain in large systems

● high-level (type 2): object - ontology mapping
● e.g. Sommer, Elmo, Jastor, RDFReactor, JAOB,

Owl2Java, …
● Makes assumption on the ontology structure (a „class X

has a property Y with range Z“, etc.)
● Object model is incompatible with OWL semantics.

31.3.2011 6Petr Křemen (petr.kremen@fel.cvut.cz), KBSS

Our Reqs for the Ontology/Application
Interface

● Ontology – application Interface consists of

● (i) a formal contract between the app and the ontology
● (ii) an object model that represents this contract
● (iii) a platform-specific control logic that ensures

transactional ontology access,

● … with the following requirements:

● contract stability (be static comparing to the ontology)
● contract maintainability (easy to establish and maintain)
● non-restrictive (full entailment checking and query

answering)
● validation (modification of the ontology by the application

does not violate the contract)

31.3.2011 7Petr Křemen (petr.kremen@fel.cvut.cz), KBSS

Our approach = explicit contract

● definition of an explicit formal contract between
the application and the ontology based on OWL
integrity constraints.

● As the ontology evolves, the contract might be
violated at some point:
● the contract must be adjusted, the object model

regenerated, and the application recompiled, or
● the ontology changes are rolled back.

● Also the contract fixes data format modified by
the application.

31.3.2011 8Petr Křemen (petr.kremen@fel.cvut.cz), KBSS

Overview of SROIQ

● For the sake of compactness, do not consider
data properties and use SROIQ instead of
OWL2-DL.

● classes, properties, individuals
● (publishedBy · Institution)∀ - “all objects published

only by institutions”,
● (= 1 publishedBy) - “all objects published by exactly

one publisher”.

● axioms, semantics, consistency

31.3.2011 9Petr Křemen (petr.kremen@fel.cvut.cz), KBSS

SROIQ example

● O1 = {Journal(SMCC),

 Journal (publishedBy · Institution)},⊑ ∀
● O2 = O1 {Journal (= 1 publishedBy)},∪ ⊑
● O3 = O2 {publishedBy(SMCC, IEEE)},∪
● O4 = O3 {publishedBy(SMCC, IEEE2)}.∪

================================
● O3 Institution(IEEE)⊧
● O4 IEEE = IEEE2⊧

31.3.2011 10Petr Křemen (petr.kremen@fel.cvut.cz), KBSS

Integrity Constraints

● Closed world semantics to SROIQ defined by
DCQNOT – distinguished conjunctive queries
with negation:

● An integrity constraint α is valid w.r.t. ontology
O if and only if there is no solution for the
DCQNOT query T (α).

31.3.2011 11Petr Křemen (petr.kremen@fel.cvut.cz), KBSS

Integrity Constraints Semantics

31.3.2011 12Petr Křemen (petr.kremen@fel.cvut.cz), KBSS

Integrity Constraints Example

● O1={Journal(SMCC),Journal (publishedBy · ⊑ ∀
Institution)},

● O2=O1 {∪ Journal (= 1 publishedBy)⊑ },

● O3=O2 {publishedBy(SMCC, IEEE)},∪
● O4=O3 {publishedBy(SMCC, IEEE2)}.∪

================================

● Violation of ICs:

● In O2, as no individual is known publisher of SMCC
● In O3, as IEEE is not known to be an institution
● In O4, as two institutions being reported as publishers

of SMCC, although there must be exactly one.

31.3.2011 13Petr Křemen (petr.kremen@fel.cvut.cz), KBSS

Integrity constraint types in an IS

● compile-time – compiled into the object model
● A1 (S · A2) is compiled to a field Set<A2> S; in class A1⊑ ∀
● A (≤ 1 S) compiles to a field Object S; in class A⊑
● easy validation (during compile time)

● run-time – optimized in run-time by cheap procedural pre-
checks within the object model

● Whenever A ⊑ (≤ n S) is present, the number of fillers of
field O(S) of an instance O(A1 , i) is smaller than n.

● reasoning-time – all other

● passed to the into the DCQNOT query engine.

31.3.2011 14Petr Křemen (petr.kremen@fel.cvut.cz), KBSS

Transaction support

31.3.2011 15Petr Křemen (petr.kremen@fel.cvut.cz), KBSS

JOPA

● Java OWL Persistence API

● Inspired by JPA 2.0

● Object model generator
based on integrity constraints

● JPA-like entitymanager API
● Implementation of the proposed

system

● http://krizik.felk.cvut.cz/km/jopa

DEMO

http://krizik.felk.cvut.cz/km/jopa

31.3.2011 16Petr Křemen (petr.kremen@fel.cvut.cz), KBSS

OWL2Query

● SPARQL-DLNOT

● Generic SPARQL-DL engine on top of arbitrary OWLAPI
reasoner.

● http://krizik.felk.cvut.cz/km/owl2query

DEMO

http://krizik.felk.cvut.cz/km/owl2query

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

