SEMANTICS-DRIVEN MIDDLEWARE LAYER FOR BUILDING OPERATION ANALYSIS IN LARGE-SCALE ENVIRONMENTS

Adam Kučera, Tomáš Pitner

LAB OF SOFTWARE ARCHITECTURES AND INFORMATION SYSTEMS

FACULTY OF INFORMATICS MASARYK UNIVERSITY

Outline

Introduction

- Facility management
- Information systems in facility management

Motivation and Goals

- Use case: University campus of Masaryk University
- Problem: Automation data analysis
- Method: Automation data semantics and querying
- Results, Summary, Conclusions

Facility Management

- According to IFMA (International Facility management association): *"a profession that encompasses multiple disciplines to ensure functionality of the built environment by integrating people, place, process and technology*"
- FM ensures tasks, which are not part of organization's "core business"

IS in Facility Management

BIM – Building Information Model

 Digital representation of a building

Source: Authors

CAFM – Computer-Aided Facility Mgmt

- CAFM software supports:
 - Space management
 - Maintenance
 - Energy management
- Provides advanced analytical tools

Source: Archibus, Inc.

Smart buildings

- Devices in buildings connected to a network
 - Heaters
 - Air conditioning units (HVAC)
 - Lighting
 - Energy meters
 - ...
- Monitored and controlled remotely

Modern (Households & SOHO/IoT)

- "We have cheap computers, can we use them to control appliances?"
- Origins in ICT

Traditional (Large sites)

- "We have lot of devices in a building, can we facilitate the management?"
- Origins in civil engineering
 & electronics engineering

Households & SOHO/ IoT

- Examples:
 - Arduino
 - .NET Gadgeteer
 - Energomonitor
 - Nest/Google thermostat
- Relatively cheap

Large sites

- Technologies
 - Building Automation Systems
 - Building Management Systems
- Expensive
- Long device lifetime
- Compliance to standards

Households & SOHO/IoT

- Devices using:
 - Operating system
 - Wi-Fi
 - HTTP
 - Web services
 - Cloud
 - M2M, Internet of Things
- Controlled by
 - Web interface
 - Smart phones

Large sites

- Devices using
 - Microcontrollers
 - Serial bus (RS232,RS485), Ethernet, TCP/IP
 - Specialized automation protocols
- Controlled by
 - Dedicated desktop applications
 - Web interface

Households & SOHO/IoT

- ARM Cortex A8
- 40 MB flash

Large sites

Source: Delta Controls, Inc.

- CPU 25 MHz
- 128 kB RAM
- 1 MB flash

Smart buildings – BAS & BMS

- **BAS** = Building Automation System
- **BMS** = Building Management System
- Used mostly at large sites
- Ensures automated operation of building technologies:
 - HVAC
 - Lighting
 - Safety & Security systems (Fire alarm, Access control)
 - Elevators
 - Energy monitoring

Smart buildings – BAS & BMS

- Remote monitoring and control
- Integration of different systems
- User interface
- Alarming
- Archiving
- Regulation algorithms
- Scheduling
- Cooperation

BMS – PLCs

- **PLC** = Programmable logical controller
- Specialized computer for automation
- Provides various types of input and outputs
 - Analog inputs –e.g. temperature, humidity, pressure sensors
 - Analog output e.g. valve opening
 - Digital (discrete) inputs e.g. motion sensor
 - Digital (discrete) outputs e.g. fan speed, relay control
- Programmable by specialized tools & languages

BMS – PLCs

Source: OFM SUKB MU

Source: siemens.com

l**ās**aris

Source: Authors

BMS-UI

Source: OFM SUKB MU

BMS-UI

Source: OFM SUKB MU

Motivation – Use case

- Goal: Examining building operation performance and efficiency using BMS data
- Use case: BMS of Masaryk University (40 buildings, 150 000 data points)

Source: muni.cz

Motivation – Analytical capabilities

BMS vs. Big Data

- Volume does not apply
 - 150 000 data points, Up to 10GB of useful data/year
- Velocity does not apply
 - Polling frequency: minutes
 - Change of Value (e. g. 1°C)
- Variety does apply (partially)
 - Structured data
 - Undifferentiated data types (Temperature, Humidity, Setpoint,...)
- Variability & Veracity do not apply
 - Data are consistent, credible and of high quality

Problem – Complexity

- Application development tasks:
 - Data access (automation protocols, OLTP)
 - Data selection, grouping & aggregation
 - Analytical methods
 - User Interface

Problem – Unsuitable semantics

- Data points identified by network address in BMS
 - BACnet protocol: 25104.Al101
- Data point properties carry **limited semantics**:
 - Object type (Analog/Binary/..., Input/Output/Variable/...)
 - Engineering units
- **Missing relation** to the physical world:
 - Location
 - Source device
 - Measuring environment (air, water,...)

Aims & Methods – New semantics

- New approach to analysis of BMS data
 - Network addresses are not used as identifiers
 - Universal model relates BMS and BIM and also adds new information

Aims & Methods – Ontology

- New semantics of BMS data can be described by Ontology language
- **OWL** Web Ontology Language (W₃C)
 - Designed for Semantic web & Linked Data
 - Based on RDF (Resource Definition Framework)
 - "Subject-Predicate-Object"

Aims & Methods – Existing ontologies

- Upper ontologies describe general concepts accross domains (not used in our use case)
- Semantic Sensor Network ontology unsuitable
 - Uses upper ontology as a base
 - Complicated querying
 - Focuses on different concepts
 - SSN: Relation between observation and obtained value
 - BMS: Relation between source device and value, description of measured value

Aims & Methods – Ontology

Source: Muhammad Asfand-e-yar, FI MU

Aims & Methods – Ontology querying

 Ontology repositories can be queried using specialized query languages (SPARQL)

Query		
Select ?De ?Ot ?Oi Where { ?idnet1 Abstract:isCharacterizedBy ?Ot. ?idnet1 Abstract:isConnectedWith ?Oi. ?idnet1 Abstract:isCompriseOf ?De		
{Select ?idnet1 Where {?idnet1 Abstract:hasMeaningOf ?idQua1.		
{ Select ?idQua1		
Where {?idQua1 Abstract:hasPhyQuantity Abstract:PhT. ?idQua2 Abstract:isCheckedWith Abstract:AtK.		
?idQua3 Abstract.isMeasuredIn Abstract:EnA. ?idQua4 Abstract:hasSomeMore Abstract:Fu14.		
FILTER (?idQua1 = ?idQua2 && ?idQua2 = ?idQua3 && ?idQua3 = ?idQua4)}}.		
?idnet2 Abstract:isGettingDataFrom ?idBim1.		
{ Select ?idBim1 Where {?idBim1 Abstract:hasSpecific Abstract:Ro001a. ?idBim2 Abstract:hasParticular Abstract:FIN01. FILTER (?idBim1 = ?idBir	n2)}}	ž –
?idnet3 Abstract:isRepresentedAs Abstract:OpPresentInputValue.		<u> </u>
FILTER(?idnet1 = ?idnet2 && ?idnet1 = ?idnet3)}}.}		
SPARQL		

Source: Muhammad Asfand-e-yar, FI MU

Aims & Methods – Ontology tools

- **Protégé** Open source ontology editor
- Apache Jena Open Source ontology framework
 - OWL/RDF Java API
 - SPARQL engine
 - TDB Native (noSQL) persistent triplestore
 - Fuseki standalone RESTful web server

Source: http://protegewiki.stanford.edu/

Aims & Methods – APIs

- Simplification of application development & integration
- Data access APIs
- Semantic API
 - Encapsulating OWL & SPARQL
 - Domain-specific operators aggregation, grouping & filtering according to:
 - Location
 - Source device
 - Meaning
 - ...
 - Ready-to-use **functions** for frequent queries

Aims & Methods – Middleware layer

Query examples

1. Semantic query

Location: *Campus Bohunice; Building* A11 Grouping: *Per floor* Measured value: *Room temperature* Source device: *Temperature sensor* Data type: *Historical data* Desired output: *Network address*

3. Data query

Data points: Semantic result data Aggregate: temporal AVG Period: 09/2014 – 1/2015 Aggregation Window: 1 day

2. Semantic result

No1: {11400.TL5, 11500.TL5, 11600.TL1} No2: {12100.TL5, 12300.TL3, 12400.TL5} No3: {12500.TL1, 12600.TL1, 12800.TL1}

4. Data result

No1: { {2014-09-01, 23.8}, {2014-09-02, 24.8}, {2014-09-03, 25.1}, {2014-09-04, 24.7}, ... No2: { ... } No3: { ... }

Query examples

1. Semantic query

Data type: Input; Output; User defined value Influenced value: Room temperature Influenced location: Room 231 at building UCB-A11 Desired output: {Source device (with Location); Network address; Data type; Meaning (quantity) }

3. Data query

Data points: *Semantic result data* Aggregate: - (*present value*)

4. Data result

{ Pump in UCB-A11-1S05; ON } { TS in UCB-A11-1S05, 76,5 °C } { AC in UCB-A11-1S07, 22 °C }

asa

2. Semantic result

{Pump in UCB-A11-1S05, 10200.AO1, Output, Pump mode (on/off) } {Temperature sensor in UCB-A11-1S05, 10200.AI5, Input, Water temperature } {Application controller in UCB-A11-1S07, 10000.AV4, User defined value, Setpoint temperature }

Results

- Architecture design
- End-user applications
- Data access API
- Semantic model

Source: Authors, Petr Zvoníček, FI MU

Summary & Conclusion

 Area: Building operation analysis using data from automation systems

• Aims:

- Provide new semantics to BMS data
- Simplify development of analytical tools
- Method: Middleware layer
 - Semantic information Integrating BMS and BIM
 - Data access
- Evaluation: Implementation of benchmarks defined in EN 15 221: Facility Management