
Christian Meilicke – University Mannheim

 Christian Meilicke
 1997-2003 studied philosophy / educational

science in Mannheim

 2003-2006 bachelor computer science in
Mannheim

 2007 researcher at the Chair of Prof.
Stuckenschmidt

 End of 2011 received Phd

 Postdoc at Prof. Stuckenschmidt

2

 Research Topic: Alignment (In)Coherence

 Reasoning

 Optimization

 OAEI

 Ontology Alignment Evaluation Initiative

 SEALS = Semantic Evaluation at Large Scale

 Automation of Evaluation Process

3

 PART I: Alignment Incoherence
 Preliminaries & Motivating Example
 Algorithms
 Experimental Results

 PART II: Matching as Optimization

 Implemented in CODI at OAEI 2011 (and 2012)

 PART III: A new approach towards Ontology
Matching
 submitted as project proposal to DFG

 4

 PART I: Alignment (In)coherence

▪ ... some things I did in my thesis

5

Person

Author

CommitteeMember

PCMember

Document

Paper

Review

People

Author

Reviewer

Doc

Paper

reviews

writes

writes

reviews

< Author, Author, =, 0.97 >
< Paper, Paper, =, 0.94 >
< reviews, reviews, =, 0.91 >
< writes, writes, =, 0.7 >
< Person, People, =, 0.8 >
< Document, Doc, =, 0.7 >
< Reviewer, Review, ≤, 0.6 >
…

6

 In the context of reductionistic alignment semantic S,
the aligned ontology AS(O1,O2) is defined as O1 ∪ O2 ∪
X

 Natural Semantics Sn

 X results from a 1:1 mapping from correspondences to axioms
▪  Person, Human, =, 0.9  ↦ Person ≡ Human

▪  createdBy, writtenBy, >, 0.75  ↦ createdBy ⊒ writtenBy

 An alignment A is incoherent iff AS(O1,O2) is

incoherent, i.e. iff AS(O1,O2) contains an unsatisfiable
concept or property

7

 Only 4 of 16 systems generate coherenct
alignment

 LogMap (uses specific reasoning techniques)
 CODI (details later)
 YAM (uses ALCOMO)
 ServoMapLt (very small alignments)

 All other systems are still incoherent
 In average ~10% of all correspondences have to

be removed to have a coherent alignment

 8

 Translating between English and an unknown
language

How are
you?

Xyc klack
spunk!

9

Gavagai!

10

 dd

Gavagai

Gavagai

Plant

Tree

Maple

Animal

Rabbit
?

?

Snok

Can there be a Snok
that is a Gavagai?

No!

11

 dd

12

A = {

 Tree ≡ Snok

 Maple ≡ Gavagai

}

AS(O1, O2) ⊨ Gavagai ⊑ Snok

AS(O1, O2) ⊨ Gavagai ⊑  Snok

… and thus AS(O1, O2) ⊨ Gavagai ⊑ ⊥

O1 = {

 Maple ⊑ Tree ⊑ Plant

 Rabbit ⊑ Animal

 Animal ⊑  Plant

}

O2 = {

 Gavagai ⊑  Snok

}

 Introduced by Reiter (1987):
 Dermine a set of those system components

which, when assumed to be functioning
abnormally, explain the discrepancy between
observed and correct behaviour.

 A subset   A is a diagnosis for A (w.r.t. O1

and O2) iff
 A \  is coherent and there exists no ’   such

that A \ ’ is coherent

13

14 14

? ?

.75

.91 .6

.82

.43

.7

.58 .2

.88

A subset   A of an incoherent alignment A is
diagnosis for A (w.r.t. O1 and O2) iff

  is a diagnosis and

 there exists no ’ such that c’ < c .

The diagnosis with minimal total of confidence
values

15

 Determine the conflict sets („orange sets“, also
called MIPS)
 Minimal Incoherence Preserving Sub-alignment
 Requires specific reasoning techniques
 Number of MIPS can be very high

 Solve the optimization problem
 Weighted Hitting Set Problem
▪ Related decision problem is NP-complete

 Can be done with different methods
 E.g. simple search algorithm

16

 Not main topic of this talk … suppose we
have two algorithms :
 Pattern-based algorithm that finds nearly all MIPS

in short time

 Expensive algorithms using full-fledged reasoning
that finds a single MIPS

17

Details can be found in:
Christian Meilicke: Alignment Incoherence in Ontology Matching. University Mannheim 2011

18

a

c

b f

e

d

19

a

c

b f

e

d

20

a

c

b f

e

d

21

a

c

b f

e

d

 Idea: Use incomplete method for incoherence
detection for pairs of correspondences in
preprocessing step

 Use MIPS available after preprocessing for
branching in the upper levels of the tree

 Use fullfledged reasoning only, when all
previously found MIPS are resolved

22

23

a

c

b f

e

d

24

 Can be applied to the outcome of any matching
system as post-processing step

 Search algorithms to find global optimal
solution
 For larger problems not efficient
 No method will be efficient for very large problems

 Improvement in precision, small loss in recall
 Relatively small improvement of overall quality in

terms of F-measure

25

 PART II: Matching as Optimization

▪ more generic and extendable

▪ CODI = Combinatorial Optimization for Data
Integration

26

1. Similarities are computed
 String based similarity measures
 WordNet or other external resources

2. Similarities are refined

 Similarity flooding
 Other structural measures

3. Alignment is extracted

 One-to-one constraint
 Coherence constraint

 27

1. Similarities are computed
 String based similarity measures
 WordNet or other external resources

2. Similarities are refined

 Similarity flooding
 Other structural measures

3. Alignment is extracted

 One-to-one constraint
 Coherence constraint

 28

 Analyze Ontologies and Labels
 Markov Logic formulae that describe structure
 Mappings as weighted Markow Logic formulae

 Define general constraints
 Hard 1:1 and coherency constraints
 Soft stability constraints

 Compute MAP state
 The state with maximum a-posteriori likelyhood
 Translate to ILP and use GUROBI to solve it
 Retranslate solution to MAP state
 Retranslate MAP state to alignment

29

subsumes1(1#Person, 1#Author)

subsumes1(1#Author, 1#FirstAuthor)

disjoint1(1#Document, 1#Person)

domainsub1(1#writes, 1#Author)

rangesub1(1#writes, 1#Paper)

...

!

30

cmap(1#Person, 2#Person), 0.98

cmap(1#Review, 2#Reviewer), 0.76

pmap(1#writes, 2#writesPaper), 0.66

...

31

|c2| cmap(c1, c2) <= 1.

|c1| cmap(c1, c2) <= 1.

|p2| pmap(p1, p2) <= 1.

|p1| pmap(p1, p2) <= 1.

!

2#Review

1#Review

2#Reviewer

32

subsumes1(c1, b1) AND disjoint2(c2, b2) AND cmap(c1, c2) => !cmap(b1, b2).

subsumes2(c2, b2) AND disjoint1(c1, b1) AND cmap(c1, c2) => !cmap(b1, b2).

domainsub1(p1, c1) AND domaindis2(p2, c2) AND cmap(c1, c2) => !pmap(p1, p2).

...
!

1#Review 2#Reviewer

1#Document 2#Person

subsumes1 disjoint2

33

0.25 subsumes1(c1, b1) AND subsumes2(c2, b2)

=> cmap(c1, c2) n cmap(b1, b2)

...

1#Paper 2#Paper

1#Document 2#Document

subsumes1 subsumes2

34

 Complete description of CODI matching system
 Details on similarity measures not presented
 Not all constraints related to properties shown

 Translation to ILP based in Jan Nößners ROCKIT

system
 https://code.google.com/p/rockit/

 Reasoning about coherency
 Coherence rules are equivalent to pattern-based

reasoning
 CODI is sometimes incoherent

35

https://code.google.com/p/rockit/
https://code.google.com/p/rockit/

36

 Clear way to define the matching process
 You just write down what you want as result

 Stability constraints help to improve the results
slightly

 Much more effcient way to solve the
optimization problem
 ... compared to a selfmade search algorithm

37

 PART III: A new approach towards

Ontology Matching
▪ to be is to be the value of a variable (Quine)

▪ labels become part of the optimization problem

▪ beneficial for complex matching

38

Black Box

39

40

 1#AcceptedPaper

 denotes an entity (concept) from ontology 1

 1:Accepted
 denotes a label attached to an entity from ontology 1

 41

 Mappings on entity level
 cmap(1#AcceptedPaper, 2#AcceptedContribution)

 pmap(1#writesPaper, 2#writtenBy)

 Mappings on token level
 tmap(1:Accepted, 2:Accepted), 0.5

 tmap(1:Paper, 2:Contribution), -0.31

 Linking entities and token

 headnoun(1#AcceptedPaper, 1:Paper)

 modifier(1#AcceptedPaper, 1:Accepted)

42

 Using ROCKIT to solve the MAP
inference problem

 Tiny example to illustrate the effects

43

 Hard constraints
 1:1 constraint on concept level

 Soft constraints

 Add similarity for each tmap(......) that is in the solution

 Results
 tmap(1:Accpeted, 2:Accpeted)

 tmap(1:Reviewed, 2:Reviewed)

 tmap(1:Rejected, 2:Rejected)

 tmap(1:Person, 2:Person)

44

 Hard constraints
 1:1 constraint on concept level
 NEW: mapping tokens => mapping concepts

 Soft constraints

 Add similarity for each tmap(......) that is in the solution

 Results
 tmap("1:Accpeted", "2:Accpeted")

 tmap("1:Reviewed", "2:Reviewed")

 tmap("1:Rejected", "2:Rejected")

 tmap("1:Person", "2:Person")

 cmap("1#Person", "2#Person")

45

 Hard constraints
 1:1 constraint on concept level
 mapping tokens => mapping concepts

 Soft constraints

 Add similarity for each tmap() that is in the solution
 NEW: Stability constraint

 Results:

 tmap("1:Accpeted", "2:Accpeted")

 tmap("1:Reviewed", "2:Reviewed")

 tmap("1:Rejected", "2:Rejected")

 tmap("1:Person", "2:Person")

 cmap("1#Document", "2#Contribution")

 cmap("1#AccpetedPaper", "2#RejectedContribution")

 cmap("1#CameraReadyPaper", "2#AccpetedContribution")

 cmap("1#Paper", "2#ReviewedContribution")

 cmap("1#Person", "2#Person")

46

 Hard constraints
 1:1 constraint on concept level
 mapping tokens => mapping concepts
 NEW: mapping concepts => mapping tokens

 Soft constraints

 Add similarity for each tmap(......) that is in the solution
 Stability constraint

 Results
 tmap("1:Paper", "2:Contribution")

 tmap("1:Accpeted", "2:Accpeted")

 tmap("1:Reviewed", "2:Reviewed")

 tmap("1:Rejected", "2:Rejected")

 tmap("1:Person", "2:Person")

 cmap("1#AccpetedPaper", "2#AccpetedContribution")

 cmap("1#RejectedPaper", "2#RejectedContribution")

 cmap("1#Paper", "2#Contribution")

 cmap("1#ReviewedPaper", "2#ReviewedContribution")

 cmap("1#Person", "2#Person")
47

 The same result can also be generated without the
token/entity distinction?
 Adding entity mappings with low confidence
 Giving a high weight to the stability constraint

 Why not this way?

 Stability has to „win“ against several mappings with low
confidence

 Will generate lots of incorrect mappings

 In general:
 Token vs. Entity approach is in line with our intuitive way of

reasoning
 Can be extended towards complex matching

48

 If a property 1#p is described by a label 1:p and a
property 1#q is described by a label 1:q and 1:p is the
passive voice of 1:q then

 pmap(1#p,1#q-1)

 or maybe pmap(1#p, inv(1#q))
 or maybe pmap-inv(1#p, 1#q)

 Example
 pmap-inv(1#writtenBy,2#writes)

49

 What about this:
 AcceptedPaper ≡ Contribution ⊓ ∃hasBeenAccepted.⊤

cmap-exists(1#AcceptedPaper,1#Contribution, 2#hasBeenAccepted)

 Can be generated without any optimization / Markow
Logic (Ritze et al., OM-2009/2010)

 However, using the optimization approach:
 Interference with soft and hard constraints !
 Easy to add/extend relevant constraints

50

Thanks a lot,
any Questions?

51

// soft constraints

-0.2 !subsumes1(c1, b1) v !subsumes2(c2, b2) v !cmap(c1, c2) v !cmap(b1, b2)

cconf: !tmapConfidence(c1, c2, cconf) v tmap(c1, c2)

|x| cmap(x,y) <= 1

|y| cmap(x,y) <= 1

// token => entity

!onlyHeadNoun1(c1) v !onlyHeadNoun2(c2) v !headNoun1(c1, h1) v !headNoun2(c2, h2) v !tmap(h1, h2) v cmap(c1, c2).

!modifiedNoun1(c1) v !modifiedNoun2(c2) v !headNoun1(c1, h1) v !headNoun2(c2, h2) v !modifier1(c1, m1) v

!modifier2(c2, m2) v !tmap(h1, h2) v !tmap(m1, m2) v cmap(c1, c2).

// entity => token

!onlyHeadNoun1(c1) v !onlyHeadNoun2(c2) v !headNoun1(c1, h1) v !headNoun2(c2, h2) v !cmap(c1, c2) v tmap(h1, h2).

!modifiedNoun1(c1) v !modifiedNoun2(c2) v !headNoun1(c1, h1) v !headNoun2(c2, h2) v !cmap(c1, c2) v tmap(h1, h2).

!modifiedNoun1(c1) v !modifiedNoun2(c2) v !modifier1(c1, m1) v !modifier2(c2, m2) v !cmap(c1, c2) v tmap(m1, m2).

52

onlyHeadNoun1("1#Person")

headNoun1("1#Person", "1:Person")

modifiedNoun1("1#ReviewedPaper")

modifier1("1#ReviewedPaper", "1:Reviewed")

headNoun1("1#ReviewedPaper", "1:Paper")

onlyHeadNoun1("1#Document")

headNoun1("1#Document", "1:Document")

modifiedNoun1("1#AccpetedPaper")

modifier1("1#AccpetedPaper", "1:Accpeted")

headNoun1("1#AccpetedPaper", "1:Paper")

modifiedNoun1("1#RejectedPaper")

modifier1("1#RejectedPaper", "1:Rejected")

headNoun1("1#RejectedPaper", "1:Paper")

modifiedNoun1("1#CameraReadyPaper")

modifier1("1#CameraReadyPaper", "1:Camera")

modifier1("1#CameraReadyPaper", "1:Ready")

headNoun1("1#CameraReadyPaper", "1:Paper")

onlyHeadNoun1("1#Paper")

headNoun1("1#Paper", "1:Paper")

modifiedNoun1("1#CamerareadyPaper")

modifier1("1#CamerareadyPaper", "1:Cameraready")

headNoun1("1#CamerareadyPaper", "1:Paper")

subsumes1("1#ReviewedPaper", "1#AccpetedPaper")

subsumes1("1#ReviewedPaper", "1#RejectedPaper")

...

...

modifiedNoun2("2#AccpetedContribution")

modifier2("2#AccpetedContribution", "2:Accpeted")

headNoun2("2#AccpetedContribution", "2:Contribution")

subsumes2("2#ReviewedContribution",

"2#RejectedContribution")

subsumes2("2#ReviewedContribution",

"2#AccpetedContribution")

subsumes2("2#Contribution", "2#RejectedContribution")

subsumes2("2#Contribution", "2#ReviewedContribution")

subsumes2("2#Contribution", "2#AccpetedContribution")

tmapConfidence("1:Paper", "2:Accpeted",-0.25)

tmapConfidence("1:Paper", "2:Reviewed",-0.375)

tmapConfidence("1:Paper", "2:Contribution",-0.4166)

tmapConfidence("1:Paper", "2:Rejected",-0.375)

tmapConfidence("1:Paper", "2:Person",-0.33384)

tmapConfidence("1:Accpeted", "2:Accpeted",0.5)

tmapConfidence("1:Accpeted", "2:Reviewed",-0.125)

53

