## Revelation of the author's identity using machine learning and stylometry



Jan Rygl

rygl@fi.muni.cz

Mar 12, 2015

Natural Language Processing Centre Faculty of Informatics, Masaryk University

Botanická 68a, 60200 Brno, Czech Republic



History

#### Motivation

- Antiquity: Homer, Demosthenes vs Anaximenes
- Jewish and Christian Bibles: Pentateuch
- England 1694 (end of pre-publication censorship): pseudonyms
- England 1887: the first algorithmic method
- England 1976: evidence in court
- present: analysis of anonymous documents in the Internet, mobiles, ...





#### Authorship recognition methods

- ideological and thematic analysis historical documents, literature
- Occumentary and factual evidence inquisition in the Middle Ages, libraries
- Ianguage and stylistic analysis stylometry present



### **Authorship Verification**

#### Definition

- decide if two documents were written by the same author (1v1)
- decide if a document was written by the signed author (1vN)

#### Examples

- The Shakespeare authorship question
- The verification of wills



### **Authorship Verification**

#### The Shakespeare authorship question

Mendenhall, T. C. 1887. The Characteristic Curves of Composition. Science Vol 9: 237–49.

- The first algorithmic analysis
- Calculating and comparing histograms of word lengths



5 / 34

Oxford, Bacon Derby, Marlowe

http://en.wikipedia.org/wiki/File:ShakespeareCandidates1.jpg



### **Authorship Attribution**

#### Definition



- find out an author of a document
- candidate authors can be known

#### Examples

- False reviews
- Anonymous e-mails



## **Authorship Attribution**

#### Judiciary

- The police falsify testimonies Morton, A. Q. Word Detective Proves the Bard wasn't Bacon. Observer, 1976.
- Evidence in courts of law in Britain, U.S., Australia



### Authorship Clustering

#### Definition

| Author B |
|----------|
| AuthorA  |
| Author C |

• cluster documents or text paragraphs according to the authors

#### **Examples**

- The Bible
- Analysis of anonymous documents



### **Authorship Clustering**

#### The Bible

K. Grayston and G. Herdan.

The authorship of the pastorals in the light of statistical linguistics. New Testament Studies, VI:1–15, 1959–1960.

Gustav Herdan, statistician and linguist:

- born 1897 in Brno
- author of *Quantitative linguistics*
- mathematical language laws, e.g. the dependence of the number of *distinct words* in a document as a function of the *document length*





### **Related fields**

#### **Computional stylometry**

- Online social networks: predicting age and gender
- Plagiarism: co-authorship
- Supportive authentication, biometrics (e.g. in e-learning)
- Native language prediction
- . . .



### History and motivation

#### **Public security**

- Anonymous documents, threats, ...
- Ministry of the Interior of CR within the project VF20102014003

#### Research for Ministry of the Interior of CR

- authorship detection for Czech
- new author's characteristics and adaptation of existing for flective free-word-order languages
- new techniques for "Internet documents"
- software Authorship Recognition Tool (ART)







Revelation of the author's identity using machine learning and stylometry



### Definition

Computional stylometry techniques that allow us to find out information about the authors of texts on the basis of an automatic linguistic analysis

#### **Motivation**

Stylometry analysis is used for

- Linguistic expertise
- Stylome: set of characteristic author's features
- $\bullet\,$  Machine learning: stylometric features  $\sim\,$  attributes for machine learning



#### Preprocessing

- document crawling
- text and meta data extraction (detect author's label)
- text cleaning
  - deduplication
  - boilerplate removal
  - remove markup tags
- language and encoding detection
- tokenize



Techniques

### Stylometry

#### Preprocessing

• morphological analysis

| je      | byt   | k5eAaImIp3nS |
|---------|-------|--------------|
| spor    | spor  | k1gInSc1     |
| mezi    | mezi  | k7c7         |
| Severem | sever | k1gInSc7     |

• syntactic analysis

| 15 | ekonom                                                       | iky | 43 | р |
|----|--------------------------------------------------------------|-----|----|---|
| 16 |                                                              | 44  | р  |   |
| 17 | <cp></cp>                                                    | 20  | р  |   |
| 18 | <clausi< td=""><td>E&gt;</td><td>20</td><td>р</td></clausi<> | E>  | 20 | р |
| 19 | <clausi< td=""><td>E&gt;</td><td>20</td><td>р</td></clausi<> | E>  | 20 | р |

Revelation of the author's identity using machine learning and stylometry



#### Authorship recognition through stylometry

For each text:

- preprocess text
- count values of stylometric features (text is represented by a vector of feature values)

Depending on the task:

- compare two documents, subtract one feature-value vector from the second one
- characterize label (author), analyze feature-value vectors with the same label (author)





## Stylometry-feature categories

#### Categories

- Morphological
- Syntactic
- Vocabulary
  - semantic words
  - stop-words
- Technical (text formatting, publishing time)
- Other





#### Word length statistics

- Count and normalize frequencies of selected word lengths (eg. 1–15 characters)
- Modification: word-length frequencies are influenced by adjacent frequencies in histogram, e.g.: 1: 30%, 2: 70%, 3: 0% is more similar to 1: 70%, 2: 30%, 3: 0% than 1: 0%, 2: 60%, 3: 40%

#### Sentence length statistics

- Count and normalize frequencies of
  - word per sentence length
  - character per sentence length





#### Author gender

- Detect sentences written in the first person
- Extract author's gender if possible
- včera jsem byla v Brně a viděla

#### Wordclass (bigrams) statistics

- Count and normalize frequencies of wordclasses (wordclass bigrams)
- verb is followed by noun with the same frequency in selected five texts of Karel Čapek





#### Morphological tags statistics

- Count and normalize frequencies of selected morphological tags
- the most consistent frequency has the genus for family and archaic freq in selected five texts of Karel Čapek

#### Word repetition

- Analyse which words or wordclasses are frequently repeated through the sentence
- nouns, verbs and pronous are the most repetetive in selected five texts of Karel Čapek

Revelation of the author's identity using machine learning and stylometry

Techniques



### Author's characteristic features

#### Stopwords

- Count normalized frequency for each word from stopword list
- Stopword  $\sim$  general word, semantic meaning is not important, e.g. prepositions, conjunctions,  $\ldots$
- stopwords ten, by, člověk, že are the most frequent in selected five texts of Karel Čapek



#### Syntactic Analysis

• Extract features using SET (Syntactic Engineering Tool)





 syntactic trees have similar depth in selected five texts of Karel Čapek Techniques



### Author's characteristic features

#### Other stylometric features

- typography
- formatting richness
- emoticons
- errors
- vocabulary richness

Revelation of the author's identity using machine learning and stylometry





#### **Document comparison**



Example: comparison between two different authors



Revelation of the author's identity using machine learning and stylometry





#### **Collection of author's documents**



#### Author analysis:

- Range: typical feature values for that author
- Consistency (deviation): which features are most important
- Corpus similarity: which features are uncommon in corpus

Techniques



### Machine learning approach

#### Automatic parameter tuning

- use models with probability estimation only if necessary
- try different techniques (Support vector machines, Nearest neighbors, Naive Bayes)
- try different kernels for SVM
- parameter grid search
- each problem and data type uses different ML model

Techniques



### Machine learning approach

# Single-layer ML technique (two-class: same vs different authorship)

Extract document features for each author characteristic

- Compare documents to obtain a similarity vector
- ML classifier predicts probability of the same authorship





#### Results

## Similarity ranking

#### Replace similarity features by similarity ranking features

#### Book:

long coherent text



Blog:

medium-length text



E-mail:

short noisy text



- Different "document conditions" are considered
- Attribution: replace similarity by ranking of the author against other authors
- Verification: select random similar documents from corpus and replace similarity by ranking of the document against these selected documents



### Double-layer machine learning

### Replace heuristics by 2<sup>nd</sup> machine learning layer

• Heuristic (proposed by linguist):

Example: word-length statistics

| BBB CCCC<br>DDDD EEEE<br>FFFFFFF III<br>JJJJJJJ KKK<br>LLLL | AA B<br>BBBBBBB<br>CCCCCC<br>EEEE FF I |
|-------------------------------------------------------------|----------------------------------------|
|-------------------------------------------------------------|----------------------------------------|

| word   | doc. | doc. | diff. |
|--------|------|------|-------|
| length | A    | В    |       |
| 1      | 0    | 2    | 2     |
| 2      | 0    | 2    | 2     |
| 3      | 2    | 1    | 1     |
| 4      | 6    | 1    | 5     |
| 5      | 0    | 1    | 1     |
| 6      | 1    | 2    | 1     |
| 7      | 2    | 0    | 2     |

$$sim = 1 - rac{1}{7} \cdot \sum_{s \in \langle 1..7 \rangle} \left| rac{A_s}{|A|} - rac{B_s}{|B|} 
ight|$$

 New ML layer (replace linguist's heuristic by empirical evidence):

$$vector = \left\langle \left| \frac{A_s}{|A|} - \frac{B_s}{|B|} \right| \text{ for } s \in \langle 1..7 \rangle \right\rangle$$

sim = classifier(vector)

Results

### Performance (Czech texts)

#### Balanced accuracy:



Verification:

- books, essays: 90 % ightarrow 99 %
- $\bullet\,$  blogs, articles: 70  $\%\,\rightarrow\,99\,\%$
- tweets: 70 %  $\rightarrow$  99 % (given enough tweets)
- Attribution (depends on the number of candidates, comparison on blogs):
  - $\bullet\,$  up to 4 candidates: 80 %  $\rightarrow\,$  95 %
  - up to 100 candidates: 40 % 
    ightarrow 60 %



- Machine translation detection
  - Recognize texts translated by Google, Bing and other machine translators
  - Remove translations from corpora
  - Detect texts falsely submitted as translated by a human expert
  - http://nlp.fi.muni.cz/sir



31 / 34



#### • Web structure detection

- Create stylometric corpora
- Detect web structure and download documents with meta-data (author, gender, age, title, topic)





#### • Gender detection

- Use data from dating services
- Detect advertisements with a falsely submitted gender
- Authorship detection consultations

Results

### <sup>7</sup> Thank you for your attention

