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Outline of talk

- Time series

- Similarity measures

- TIme series representation
- Motif discovery

- TSMiner



Time series

What Is time series...

- Popular statistical definition

,The time series is a sequence of values of a
statistical character (indicators) arranged in terms
of time away from the past to the present. The
Indicator changes over time, the overall
development can be divided into three components
- trend, periodic and random.*

-|s It the only option?




Time series

%asure things... }

*Blood pressure
*Popularity of politicians
Annual rainfall

*Stock value

Mgt L




Time series

What Is time series...

- Time series IS a collection of
observations made sequentially in time.*
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Time series

- Image data, may be thought of as time series

Lranrnfl/



Time series

- Text data, may best be thought of as time series...

& Blue: “God” -English Bible
Frequency of

words In the
Bible |

Red: “Dios” -Spanish Biple




Time series

- Video data, may be thought of as time series

gy



Time series

- Handwriting data, may be thought of as time series
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Small digression - dendrogram

- A Useful Tool for Summarizing Similarity Measurements

The similarity between two
objects in a dendrogram is
represented as the height

of the lowest internal node
they share.

Tenmmal Branch A/Root
\ ' Fntemal Branch
Fternal Node | &+

=




Small digression - dendrogram




Time series

- Why is working with time series so difficult?
- 1 hour of EKG — 1 gigabyte.

- Space shuttle telemetry — 20 000 sensors send data
every second, hundreds of GB per regular mission.

- Database Macho — astronomical observations 20
millions stars, 3 terabytes per day.

- 300 millions phone calls in AT&T network every day
between 100 millions of customers.

- 50 000 stock titles in USA, 100 000 trades per second.

-We need a data representation for
efficient processing




Time series

- Why is working with time series so difficult?
- We are dealing with subjectivity

. ] \ .

O——

AN
e
ey e

- We need to measure the similarity of time series
regardless of the subjective feeling




Time series

- Why is working with time series so difficult?
- Different scales
- Differing sampling rates
- Noise, missing values



Time series
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Time series

-For all these activities we need to
determine the similarity between time
series.



Time series similarity

- Similarity is hard to define, but we know it when we see it




Time series similarity

- We have to define distance measure

- Definition: Let O1 and O2 are two objects from the
universe of possible objects. The distance
(dissimilarity) is denoted by D(O1, O2)

- Properties of distance measure
- D(A, B) = D(B, A), symmetry
- D(A,A) =0, identity
-D(A,B)=0 iffA=B  positivity
- D(A, B) <=D(A, C) + D(B, C) triangular inequality



Time series similarity
D(A,B) = D(B,A) Symmetry

D(%.%) = D(2.%)

Otherwise you could say:

Selma, but Selma
does not look like

\?GTTY! y




Time series similarity
D(AA)=0 ldentity

D(% % =0

Otherwise you could say:

Marge looks more

doesl
N

~

like Patty than Patty

/




Time series similarity
D(AB)=0 IIFA=B  Positivity

D(ﬁ) 0, IIF §=%

Otherwise you could say:

é know Patty and h
Marge are somehow

different, but I can't

tell them apart!
. /




Time series similarity
D(A,B) < D(A,C) + D(B, C%Tnangular iInequality

D(&4) <D(& ) + D(i )

Otherwise you could say:

Jc’r’ry looks like Mar'ge,\
Selma also looks like
Marge, but Patty looks

nothing like Selmal
N v




Time series similarity

- Importance of triangular inequality:

- We aer looking for the closest point to Q, in a database of
3 objects. Suppose that the triangular inequality holds,
and that we have precomplied a table of distance
between all the items in the database.




Time series similarity

- Importance of triangular inequality:

- We calculate that a is 2 units from Q, b is 7,81 from Q. We
don’t have to calculate distance from c to Q!

D(Q,b) < D(Q,c) + D(b,c)
D(Q.b) - D(b,c) < D(Q,c)

7.81 - 2.30 < D(Q,c) 5 R
¢ o
5.51 < D(Q,c)
a b C
a 6.70 | 7.07
b 2.30 [ K
cl | |1 b




Time series similarity

- S0 we are looking for a suitable distance measure

between two series

- Frequently used measures of similarity are based on
a comparison of the overall shape of time-series

- Minkowski metrics

Y

]

Manhattan

- Frequently used is not always the best

y

/

Euclidean




Time series similarity

- Euclidean Distance Metric

- Let Q and C are time series
pQ.C)= (a-c) \WN/L

Dguares (Q.C) = (0 ;)

D(Q.C)



Time series similarity

- In most cases, the Euclidean metric does
not give suitable results, due to
"misrepresentation” in the source data.

- Offset translation
- Amplitude scaling
- Linear trend

- Noise



Time series similarity
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Time series similarity

T -

0O 100 200 300 400 500 600 700 800 900 1000 0O 100 200 300 400 500 600 700 800 900 1000

Q = (Q - mean(Q)) / std(Q)
C = (C - mean(Q)) / std(C)
D(Q,C)



Time series similarity

2
o MWM
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Find best linear
approximation, than
subtract that line from
time series.

21
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0

[

Removed linear trend
Removed offset translation
Removed amplitude scaling



Time series similarity

“ 20 40 60 80 100 120 140 “ 20 40 60 80 100 120 140

Q = smooth(Q)
Replacing points C = smooth(C)
with average of D(Q,C)
their neighbors



Time series similarity

fClus‘remd using A élus’rered using Euclidean\

Euclidean distance on distance, after removing

the raw data. noise, linear trend, offset
translation and amplitude

J




Time series similarity

- To remeber — the “raw” time series may
have distortions which we should remove
before clustering, classification etc.

BUT

- Sometimes the distortions are the most
interesting thing about the data!



Time series similarity

- Dynamic Time Warping (DTW)

- One method to deal with a phase shift between time
series

Euclidean distance Dynamic Time Warping



Lowland Gorilla
Gorilla gorilla graueri

Mountain Gorilla
Gorilla gorilla beringei
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Time series similarity

_ Dataset Euclidean DTW
DTW is two to three v ;
| ord Spotting 40 8,600
orders of magthde Sign language 10 1,110
slower than Euclidean GUN 60! 11.820
Distance (time In MSeC) | Nuclear Trace 210 | 144.470
- L eaves 150 51,830
‘ (4) Faces 50| 45,080
: Control Chart 110| 21,900
DTW
2-Patterns 16,890 | 545,123




Time series similarity

- We create a matrix the size of |Q| by |C]|, then fill it in with
the distance between every pair of point in our two time

series. /\/\C/\/

Q .

1/\/\/&@& .




Time series similarity

- Every possible warping between two time series, is a path
though the matrix. We want the best one.

C
DTW(Q,C) = min{ D w, / K /\/\/\/

Q

- Dynamic Time Warping gives
much better results than
Euclidean distance, but DTW
IS very slow to calculate!

Warping path w



Time series similarity

- Simple idea - approximate the time series with some
compressed or downsampled representation, and do
DTW on the new representation.

0.07 sec



Time series similarity

- In general, it’s hard to speed up a single DTW calculation

- However, if we have to make many DTW calculations
(which is almost always the case), we can potentiality
speed up the whole process by lowerbounding.

The true DTW

* DTW(A, B) function is very

slow...

e lower _bound distance(A,B)  the lower bound

function is very
fast...

lower bound_distance(A,B) < DTW(A,B)



Time series similarity

- Lowerbounding — distance of points in space is less than

or equal to the actual distance

AlgorithmLower_Bounding_Sequential _Scan{Q)

©O~NOOhEWNE

10.
11.

best _so_far infinity;

for all sequences in database

LB_dist = lower_bound_distanCg(@Q)

if LB_dist <best_so far

true_dist = DTWC,, Q);

iIf true_dist < best_so_far
best so far true_dist;
index_of best_matchi;

endif

endif

endfor




Time series similarity

Envelope -
Based Lower
Bound

LB_Keogh

(Qi - Li)2 if Qi < I—i
0 otherwise

LB _Keogh(Q,C)=)_

=1

n {(q.uoz if q,>U,



Time series — data preparation

Data cleansing

- Missing values
- Skip values

- Value estimation
- Linear interpolation

- Noise reduction
- Binning
- Moving average

Data normalization

» Transforming data into
the same range

» Min-max
x — X—=Xmin
norm Xmax —Xmin
- Z-score
X— U
Xnorm =

g



Time Series Representations

- We have already told how to define similarity, but how find
it quickly?

- Generic Data Mining Algorithm:

- Create an approximation of the data, which will fit in main memory,
yet retains the essential features of interest.

- Approximately solve the problem at hand in main memory

- Make few accesses to the original data on disk to confirm the
solution obtained in step 2

- But which approximation should we use?




Time Series Representations

Time Series Representations

VAN

Model Based Data Adaptive Non Data Adaptive Data Dictated
Hidden  Statistical Grid Clipped
Markov ~ Models Data
Models Sorted  Pjecewise SN9ular  gympolic  Trees Wavelets ~Random Spectral ~ Piecewise

Coefficients | . IV<':l|Ue Mappings Aggregate
Polynomia Approximatior/ \ / \ / Approximation
Eilsg:\r/vse Adaptive Natural Strings Orthonormal  Bi-Orthonormal Discrete  Discrete  Chebyshev
) . Piecewise Language Fourier Cosine Polynomials
Approximation Constant Transform  Transform
/ \ Approximation
Symbolic Non )
Interpolation  Regression Aggregate Lower Haar Daubechies Coiflets Symlets
Approximation Bounding don n>1

Value Slope
Based Based



Time Series Representations

\2,/\_ Raw data = Q f t
S ’ . N
Approximation | = D s(Q’.S) I l

D(Q,S) = \/Z (q| — S )2 D s(Q’,S) E\/Z:\il(sri —sr,)(qv, —sv,)’

=1
For every two time series Q and S approximation has to

""0. allow lower bounding
D@ <DQS .
2




Discrete Fourier
Transform

;
|

Represent the time
series as a linear
combination of sines S O\
and cosines. s

Jean Fourier
1768-1830

C(t)= (A cos(2aw,t) + B, sin(2aw,t))

* Good ability to compress most natural
signals, O(n*log(n)).

 Difficult to deal with sequences of different
lengths.



Discrete Wavelet

Transform

T

80 100 120 140

ho

Represent the time
series as a linear
combination of Wavelet m

basis functions.

Alfred Haar
1885-1933

Good ability to compress

Fast linear time algorithms for DWT
Able to support some interesting
non-Euclidean similarity measures
Signal must have a length n = 27int



Piecewise Linear
Approximation

1
100

1
120
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140

Represent the time series
as a sequence of straight
lines. Lines could be
connected (N/2) or
disconnected (N/3). Series
IS replaced by segments,
their number is much

smaller than no of points in
the original series. W
] ] has
* O(n2N), which is too = length
slow for data mining ~ Leife Inselis

. (right_height can
* Faster heuristic be inferred by looking

Karl Friedrich Gauss
1777 - 1855

solutions at the next segment)
e Top-Down
« Bottom-Up /\/
) Sll.dmg Window Each line segment has
e Not suitable for - length
indexing e left height

= right_height



Piecewise Linear
Approximation
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o Sliding Windows
e Gradually from left increase the potential
segment until the deviation from the
original series does not exceed the limit
set by the user
* Relatively good example for stock data
« Beware of extreme values
« Variant with k-value adding is faster
 Top-down
» Divide series at a suitable location (eqg,
minimum or maximum values) into two
segments. Then further divide into smaller
segments until the stopping criterion.
 Bottom-up
« Complement previous - series is divided
Into n / 2 segments, which gradually
combine.
« SWAB - sliding window and bottom-up
» Buffer segments of length w is filled with
sliding window, then bottom-up.




Piecewise
Aggregate
Approximation

Split series into n segments, calculate
average for each segment and this
value will replace all points in the
segment. All segments have the

same length. 0
N
Y =N
X = ZXJ

140 j=y(i-1)+1
Given the reduced dimensionality

—  representation we can calculate the
approximate Euclidean distance

X—3 DR(X’Y_)E\/%\/ZL(Z_E)Z

— e+ This measure is provably lower bounding.
X5« Extremely fast to calculate

x6 * Support series of arbitrary lengths

e Can support any Minkowski metric

— e« Supports non Euclidean measures

e Simple, intuitive




Time Series Representations

Pilecewise

é Aggregate
/"WFH Approximation

i




Adaptive
Piecewise
Constant

Approximation

e

X

X

0 2lO 4IO 6:0 8'0 12)0 1l20 1I40
— <cv,,Cr;>
<CV,,Cr,>
1 L e
,_L<cv3,cr3>
<Ccv,,Cr,>

Generalize PAA to allow the piecewise
constant segments to have arbitrary
lengths. Note that we now need 2
coefficients to represent each segment, its
value and its length.

Raw Data (Electrocardiogram)

L

 Many advantages, but challenging to
iIndex - implementation exists, but is
very challenging.

* Very fast O(n)

* More efficient as other approaches

e Support series of arbitrary lengths.

e Supports non Euclidean measures.

Adaptive Representation (APCA)
Reconstruction Error 2.61




Clipped data

0 20 40 60 80 100 120 140

...110000110000001111....

4 Zero

>‘Ze¥
23 One
2 On

6 Zer
49

Ones

44
Zeros|23|4|2|6|49

Find the mean of a time series,
convert values above the line to “1’
and values below the line to “0”.

Runs of “1”s and “0”s can be Tony Bagnall
further compressed with run length
encoding if desired.

This representation does allow
lower bounding.

Ultra compact representation which
may be particularly useful for
specialized hardware.



Symbolic c he ti s int iohabet
Approximation onyertt e time series in 0 an alphabe
of discrete symbols. Use string indexing

/\/\ " technigues to manage the data.

aabbbcchb

a "~ « We could take advantage of a
a 1 wealth of techniques from the
b ; very mature field of string
b ; processing and bioinformatics.

 How we should discretize the
times series (discretize the
values, the slope, shapes)?



Symbolic Aggregate ApproXimation

- Algorithm for symbolic approximation
- 2002, Eamonn Keogh, University of California

- Significantly reduces the number of dimensions of
the original time series

- Lower bounding of Euclidean distance



Symbolic Aggregate ApproXimation

- It consists of three steps

- Normalisation of time series
- The mean value is O

- PAA transformation

- Divide time series into multiple segments, calculate
the average for each segment, this value will
replace all points in the segment

- Discrete symbolic representation
- Conversion time series to the alphabet symbols



Symbolic Aggregate ApproXimation




Symbolic Aggregate ApproXimation

 Normalized series has a normal distribution and
shape of the Gaussian curve, we define the so-
called breaking points, which divide
the Gaussian curve into equal parts,
discretization generates symbols with equal
probabillity.



Symbolic Aggregate ApproXimation

B;

o

3 - S5 6 ¥ 8 9 10
043 | 067 | 084 [ 097 | -1.07 | -1.I5 | -1.22 | -1.28
0.43 0| 025 | 043 | 057 | -0.67 | 0.76 | -0.84
0.67 | 10.25 0| -018 | -0.32 | -043 | -0.52

084 | 043 | 0.8 0 | 014 | =0.25

0.97 | 057 | 032 ] 0.14 0

1.07 | 067 | 043 | 025

1.15 | 076 | 0.52

1.22 | 084

1.28




Symbolic Aggregate ApproXimation

M=
| L

II
0 20 40 60 80 100 120




Symbolic Aggregate ApproXimation

Probability

0.999
0.997

0.99
0.98

0.95
0.90

0.75

0.50

0.25

0.10
0.05

0.02
0.01

0.003
0.001

-10

10




Symbolic Aggregate ApproXimation

} (A)

(B)

C = baabccbc

. $311831e o
C = babeacea \nnrd )= /TS (dsG.6)f




Motif Discovery

- Winding Dataset
A B ( The angulargspced clof reel 2 ) C

1 1 I

0 500 1000 1500 2000 2500

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120

140



Motif Discovery

- We define motifs, but how do we find them?
- Brute force search algorithm is just too slow.

- The most reference algorithm is based on a idea
from bioinformatics, random projection* and the
fact that SAX allows use to lower bound discrete
representations of time series.




Motif Discovery

I (m=1000)

\ |

58

985

1000

Assume that we have a
time series 7 of length
1,000, and a motif of
length 16, which occurs
twice, at time 7', and
time 7.



Motif Discovery

A mask {1,2} was randomly chosen,
so the values in columns {1,2} were
used to project matrix into buckets.

Collisions are recorded by
incrementing the appropriate
location in the collision matrix

alc|b|a > 1 Hss| 1
2bcab 2
o | G 457

- | - 58| 1

sgla|C|C|a

S B IR A 2 985 985 1
ss blclc|c 7
2 3 4

1 2 . 58 . 985




Motif Discovery

A mask {2.4} was randomly chosen,
so the values in columns {2.4} were
used to project matrix into buckets.

1lalclb
C

80
=l

sgacca/

ogs | b | €
>

58

985

Once again, collisions are
recorded by incrementing the
appropriate location in the

collision matrix
1
2
58| 2
985 1
1 2 - 58 - 985



Motif Discovery
1
2| 2
I |3
s[2712 |1
31212 |1
ogs O | 1| 2|1 |3
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Visualization

- Time Series Spiral
- Simple and intuitive
- Many extensions possible

- Only useful on periodic data, and only
then if you know the period



Visualization

010110010111100110100100001000101  10001000101001000101010100001010

001101101011100001010101110111110 100010101110111101011010010111010

001101101101111110100110010010001 010101001110101010100101001010101
101000111100110110100010111100010  110101010010101010110101010010110
110100110110011010000001001100010  010111011110100011100001010000100

011100000111010011001011000010100  111010100011100001010101100101110

10 101

Lets put the sequences into a depth limited suffix
tree, such that the frequencies of all triplets are
encoded in the thickness of branches...



Visualization

“Tﬂmmwwwmm ‘ accbabedbceabdbeadbacbdbdcecadbaach. ..

/

Time Series Bitmap —

b aa|ab|ba|bb| ==

d ac |ad |bec|bd|
ca|cb|da|db

C d ccled|del|dd
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TSMiner

www.tsminer.cz, www.tsminer.com, www.tsminer.eu

Multi-tier application for time series datamining
MS SQL Server 2008 R2
ASP.NET, .NET Framework 4.0

Time Series Miner

Username:

Password:

L Login to system
——— o
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Casové fady

Vyberte projekt:

Prodejni databaze

00000001 Daniel Holasek

00001066 AWT Cechofracht as.
00012131 RUBENA a. s.

00559709 GEODIS BRMNO, spol. s r.o.
00570664 Servant, a.s.

00676853 HOSPIMED, spol. s r.o.
10356592 Ing. Viadimir Viborny - LAN - projek
10625658 Ing. Leo Stoklasa

11278528 Antonin Kolinger ASON

12164739 COMPEX spol. s r.o.

13389271 Ing. Petr Kuba

15059278 MATEZA spol. s ro.

15609391 Ing. Jaroslav Chutny

15887405 Motorsport, spol. s r.o.

15887791 AUTO KELLY, A.S.

16192648 DERMATEX, spol. s r.0.

16556402 Straumann s.r.o.

18381201 AUTO - COLOR spol. s r.o.
18562092 Ing. Petr Prokipek

18627722 ORIFLAME CZECH REPUBLIC spc
18630774 KODYS spol. sr.o.

18828507 REDA a.s.

19015909 Schindler, spol. s r.o.

25036661 Kartoon 5.r.0.

25044516 FCC pramyslové systémy s.r.o.
25046225 ELTEQ, spol. s 1. 0.

25083163 Dentamed (CR), spol. s r.o.
25099418 PRIMAVERA AMDORRANA s.1.0.
25101625 HUSKY CZ s.r.o.

25123998 TOMKET, s.ro.

25130340 BRITEX CZ, 3.R.0.

25140388 FISCHER INTERNATIONAL S.R.0.
25158694 PROFIMED s.r.o.

25262785 Smart Print s.r.0.

25266276 CLIPET s.r.o.

30.4.2007 8.8,200716,11,20024.2,2003 3,6,200511,9.20020.12.20080,3. 2009 8.7, 200916, 10, 20024, 1.20104,5.2010

Potet prvkid:

Minimum:

159 Soucet fady: 734967081 Primérna hodnota:

360,57 Maximum:



TSMiner
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00001066 AWT Cechofracht a.s.

—— 000121351 RUBEMA a. s,

|~ 26450691 MAKRD Cash 8 Carry CR s.r.0.

@ Vypnout transformace © Normalizovat Fadu © Aproximace PAA © Aproximace SAX




TSMiner

| —— 00001066 AWT Cechafracht a.s.
5l - —— 00012131 RUBEMA a. 5.
1 == 26450691 MAKRD Cash 8 Carry CR 1.0, :

ﬂl,_' Ml'\ﬂ) (\ A *r,l!\af%n,w it

30.4.2007 5.5.2007 16.11.200724.2.2008 3.6.2006 11.9.200520.12.20058350,3.2009 5.7.2009 16.10.200924.1.2010 4.5,.2010

2=

@ Vypnout transformace @ Mormalizovat fadu © Aproximace PAA © Aproximace SAX




TSMiner
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00001066 AWT Cechofracht a.s.

—— 000121351 RUBEMA a. 5.

. = 26450691 MAKRD Cash 8 Carry CR =.r.0, _

© Vypnout transformace © Mormalizovat fadu @ Aproximace PAA © Aproximace SAX




TSMiner
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Klasifikace tridy
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Main problems of time series analysis

o Pattern search w/o prior parameter setting

e Clustering of streamed data

e Time series merging — finding all shared
subseguences

o Why"* analysis in classification and clustering,
automatic generation of explanation

* Weighed representation of time series

 Visualization of large time series

(This slide was translated to English by V. Svatek)



Thanks for your attention
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