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Outline of talk

•Time series
•Similarity measures
•Time series representation
•Motif discovery
•TSMiner



Time series

What is time series…
• Popular statistical definition

„The time series is a sequence of values of a 
statistical character (indicators) arranged in terms 
of time away from the past to the present. The 
indicator changes over time, the overall 
development can be divided into three components 
- trend, periodic and random.“

• Is it the only option?



Time series
People measure things…

…and things change over time.

•Blood pressure
•Popularity of politicians
•Annual rainfall
•Stock value



Time series

What is time series…
• „Time series is a collection of 
observations made sequentially in time.“
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Time series
• Image data, may be thought of as time series



Time series
• Text data, may best be thought of as time series…
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Time series
• Video data, may be thought of as time series



Time series
• Handwriting data, may be thought of as time series

G. Washington manuscript

George Washington
1732-1799
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Small digression - dendrogram
• A Useful Tool for Summarizing Similarity Measurements

The similarity between two 
objects in a dendrogram is 
represented as the height 
of the lowest internal node 
they share.



Small digression - dendrogram



Time series
• Why is working with time series so difficult?

• 1 hour of EKG – 1 gigabyte.
• Space shuttle telemetry – 20 000 sensors send data 

every second, hundreds of GB per regular mission.
• Database Macho – astronomical observations 20 

millions stars, 3 terabytes per day.
• 300 millions phone calls in AT&T network every day

between 100 millions of customers.
• 50 000 stock titles in USA, 100 000 trades per second.

• We need a data representation for 
efficient processing



Time series
• Why is working with time series so difficult?

• We are dealing with subjectivity

• We need to measure the similarity of time series 
regardless of the subjective feeling



Time series
• Why is working with time series so difficult?

• Different scales
• Differing sampling rates
• Noise, missing values



Time series
Clustering Classifications

Query by 
Content

Rule 
discovery 10

⇒
s = 0.5
c = 0.3

Motif discovery

Novelty detectionVisualization



Time series

•For all these activities we need to 
determine the similarity between time 
series.



Time series similarity
• Similarity is hard to define, but we know it when we see it



Time series similarity
• We have to define distance measure

• Definition: Let O1 and O2 are two objects from the 
universe of possible objects. The distance 
(dissimilarity) is denoted by D(O1, O2)

• Properties of distance measure
• D(A, B) = D(B, A), symmetry
• D(A, A) = 0, identity
• D(A, B) = 0  iff A = B positivity
• D(A, B) <= D(A, C) + D(B, C) triangular inequality



Time series similarity
D(A,B) = D(B,A) Symmetry

D(  ,  ) = D(  ,  )
Otherwise you could say:

Patty looks like 
Selma, but Selma 
does not look like 
Patty!



Time series similarity
D(A,A) = 0 Identity

D(  ,  ) = 0
Otherwise you could say:

Marge looks more 
like Patty than Patty 
does!



Time series similarity
D(A,B) = 0  IIF A = B Positivity

D(  ,  ) = 0, IIF    =
Otherwise you could say:

I know Patty and 
Marge are somehow 
different, but I can’t 
tell them apart!



Time series similarity
D(A,B) ≤ D(A,C) + D(B,C) Triangular inequality

D(  ,  ) ≤ D(  ,  ) + D(  ,  )
Otherwise you could say:

Patty looks like Marge, 
Selma also looks like 
Marge, but Patty looks 
nothing like Selma!



Time series similarity
• Importance of triangular inequality:
• We aer looking for the closest point to Q, in a database of 

3 objects. Suppose that the triangular inequality holds, 
and that we have precomplied a table of distance 
between all the items in the database.

a

b
c

Q
a b c

a 6.70 7.07
b 2.30
c



Time series similarity
• Importance of triangular inequality:
• We calculate that a is 2 units from Q, b is 7,81 from Q. We

don’t have to calculate distance from c to Q!
D(Q,b) ≤ D(Q,c) + D(b,c)
D(Q,b) - D(b,c) ≤ D(Q,c)

7.81 - 2.30 ≤ D(Q,c)
5.51 ≤ D(Q,c)

a

b
c

Q

a b c
a 6.70 7.07
b 2.30
c



Time series similarity
• So we are looking for a suitable distance measure 
between two series

• Frequently used measures of similarity are based on 
a comparison of the overall shape of time-series

• Minkowski metrics

• Frequently used is not always the best



Time series similarity
• Euclidean Distance Metric
• Let Q and C are time series
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Time series similarity
• In most cases, the Euclidean metric does 
not give suitable results, due to 
"misrepresentation" in the source data.
• Offset translation
• Amplitude scaling
• Linear trend
• Noise



Time series similarity
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Time series similarity

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Q = (Q - mean(Q)) / std(Q)

C = (C - mean(C)) / std(C)
D(Q,C)



Time series similarity
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Removed offset translation
Removed amplitude scaling

Removed linear trend
Find best linear 
approximation, than 
subtract that line from 
time series.



Time series similarity
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Q = smooth(Q)
C = smooth(C)
D(Q,C)

Replacing points 
with average of 
their neighbors



Time series similarity
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Clustered using Euclidean 
distance, after removing 
noise, linear trend, offset 
translation  and amplitude 
scaling.

Clustered using 
Euclidean distance on 
the raw data.



Time series similarity
• To remeber – the “raw” time series may 
have distortions which we should  remove 
before clustering, classification etc.

BUT

• Sometimes the distortions are the most 
interesting thing about the data!



Time series similarity
• Dynamic Time Warping (DTW)
• One method to deal with a phase shift between time 

series

Euclidean distance Dynamic Time Warping



Mountain Gorilla
Gorilla gorilla beringei

Lowland Gorilla
Gorilla gorilla graueri
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Time series similarity
DTW is two to three 
orders of magnitude 
slower than Euclidean 
Distance (time in msec)

Dataset Euclidean DTW
Word Spotting 40 8,600
Sign language 10 1,110
GUN 60 11,820
Nuclear Trace 210 144,470
Leaves 150 51,830
(4) Faces 50 45,080
Control Chart 110 21,900
2-Patterns 16,890 545,123



Time series similarity
• We create a matrix the size of |Q| by |C|, then fill it in with 

the distance between every pair of point in our two time 
series. C

Q

C

Q



Time series similarity
• Every possible warping between two time series, is a path 

though the matrix. We want the best one.

• Dynamic Time Warping gives 
much better results than 
Euclidean distance, but DTW 
is very slow to calculate!
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Time series similarity
• Simple idea - approximate the time series with some 

compressed or downsampled representation, and do 
DTW on the new representation.

0.07 sec

1.03 sec



Time series similarity
• In general, it’s hard to speed up a single DTW calculation
• However, if we have to make many DTW calculations 

(which is almost always the case), we can potentiality 
speed up the whole process by lowerbounding. 

• DTW(A,B)
• lower_bound_distance(A,B)

The true DTW 
function is very 
slow…
The lower bound 
function is very 
fast…

lower_bound_distance(A,B) ≤ DTW(A,B)



Time series similarity
• Lowerbounding – distance of points in space is less than 

or equal to the actual distance

1. best_so_far= infinity;
2. for all sequences in database
3. LB_dist = lower_bound_distance(
4. if LB_dist < best_so_far
5. true_dist = DTW(
6. if true_dist < best_so_far
7. best_so_far= true_dist;
8. index_of_best_match= i;
9. endif
10. endif
11.  endfor

AlgorithmLower_Bounding_Sequential_Scan(Q) 
1. best_so_far= infinity;
2. for all sequences in database
3.
4. if LB_dist < best_so_far
5. Ci, Q);Ci, Q);
6. if true_dist < best_so_far
7. best_so_far= true_dist;
8. index_of_best_match= i;
9. endif
10. endif
11.  endfor

AlgorithmLower_Bounding_Sequential_Scan(Q) 

Ci, Q);Ci, Q);



Time series similarity
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Time series – data preparation

Data cleansing
• Missing values

• Skip values
• Value estimation

• Linear interpolation

• Noise reduction
• Binning
• Moving average

Data normalization
•



Time Series Representations
• We have already told how to define similarity, but how find 

it quickly?

• Generic Data Mining Algorithm:
• Create an approximation of the data, which will fit in main memory, 

yet retains the essential features of interest.
• Approximately solve the problem at hand in main memory
• Make few accesses to the original data on disk to confirm the 

solution obtained in step 2

• But which approximation should we use?



Time Series Representations
Time Series Representations

Data Adaptive Non Data Adaptive

SpectralWavelets Piecewise
Aggregate 
Approximation

Piecewise 
Polynomial

SymbolicSingular
Value
Approximation

Random 
Mappings

Piecewise
Linear
Approximation

Adaptive
Piecewise
Constant
Approximation

Discrete 
Fourier 
Transform

Discrete
Cosine
Transform

Haar Daubechies 
dbn   n > 1

Coiflets Symlets

Sorted
Coefficients 

Orthonormal Bi-Orthonormal

Interpolation Regression

Trees

Natural
Language 

Strings

Symbolic
Aggregate
Approximation  

Non
Lower
Bounding

Chebyshev
Polynomials 

Data DictatedModel Based

Hidden 
Markov 
Models

Statistical 
Models

Value 
Based

Slope 
Based

Grid Clipped
Data



Time Series Representations
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Jean Fourier
1768-1830
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Discrete Fourier 
Transform

Represent the time 
series as a linear 
combination of sines
and cosines.
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• Good ability to compress most natural 
signals, O(n*log(n)).

• Difficult to deal with sequences of different 
lengths.
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DWT

Discrete Wavelet 
Transform

Alfred Haar
1885-1933

Represent the time 
series as a linear 
combination of Wavelet 
basis functions.

• Good ability to compress
• Fast linear time algorithms for DWT
• Able to support some interesting 

non-Euclidean similarity measures
• Signal must have a length n = 2^int
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Piecewise Linear
Approximation

Represent the time series 
as a sequence of straight 
lines. Lines could be 
connected (N/2) or
disconnected (N/3). Series
is replaced by segments, 
their number is much 
smaller than no of points in
the original series. Each line segment 

has 
• length 
• left_height
(right_height can 
be inferred by looking 
at the next segment)

Each line segment has 
• length 
• left_height 
• right_height

Karl Friedrich Gauss
1777 - 1855

• O(n2N), which is too 
slow for data mining

• Faster heuristic
solutions

• Top-Down
• Bottom-Up
• Sliding Window

• Not suitable for
indexing
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Piecewise Linear
Approximation • Sliding Windows

• Gradually from left increase the potential 
segment until the deviation from the 
original series does not exceed the limit 
set by the user

• Relatively good example for stock data
• Beware of extreme values
• Variant with k-value adding is faster

• Top-down
• Divide series at a suitable location (eg, 

minimum or maximum values) into two 
segments. Then further divide into smaller 
segments until the stopping criterion.

• Bottom-up
• Complement previous - series is divided 

into n / 2 segments, which gradually 
combine.

• SWAB – sliding window and bottom-up
• Buffer segments of length w is filled with 

sliding window, then bottom-up.



Piecewise 
Aggregate 

Approximation
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Given the reduced dimensionality 
representation we can calculate the 
approximate Euclidean distance

• This measure is provably lower bounding.
• Extremely fast to calculate
• Support series of arbitrary lengths
• Can support any Minkowski metric
• Supports non Euclidean measures
• Simple, intuitive

Split series into n segments, calculate 
average for each segment and this 
value will replace all points in the 
segment. All segments have the 
same length.



Time Series Representations

Piecewise 
Aggregate 

Approximation



Adaptive 
Piecewise 
Constant 

Approximation
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Generalize PAA to allow the piecewise 
constant segments to have arbitrary 
lengths. Note that we now need 2 
coefficients to represent each segment, its 
value and its length.

Raw Data (Electrocardiogram)

Adaptive Representation (APCA)
Reconstruction Error 2.61

• Many advantages, but challenging to 
index - implementation exists, but is 
very challenging.

• Very fast O(n)
• More efficient as other approaches
• Support series of arbitrary lengths.
• Supports non Euclidean measures.



0 20 40 60 80 100 120 140

X

X'

00000000000000000000000000000000000000000000111111111111111111111110000110000001111111111111111111111111111111111111111111
111111

…110000110000001111…
.

44 Zeros
23 Ones

4 Zeros
2 Ones

6 Zeros
49 

Ones

44 
Zeros|23|4|2|6|49

Clipped data

Tony Bagnall

Find the mean of a time series, 
convert values above the line to “1’ 
and values below the line to “0”.

Runs of “1”s and “0”s can be 
further compressed with run length 
encoding if desired.

This representation does allow 
lower bounding.

Ultra compact representation which 
may be particularly useful for 
specialized hardware.



0 20 40 60 80 100 120 140

X

X'

0

1

2

3

4

5

6

7

a  a  b  b  b  c  c  b

a

b
b

b
c

c

b

a

Symbolic 
Approximation Convert the time series into an alphabet 

of discrete symbols. Use string indexing 
techniques to manage the data.

• We could take advantage of a 
wealth of techniques from the 
very mature field of string 
processing and bioinformatics.

• How we should discretize the 
times series (discretize the 
values, the slope, shapes)?



Symbolic Aggregate ApproXimation
• Algorithm for symbolic approximation
• 2002, Eamonn Keogh, University of California
• Significantly reduces the number of dimensions of 
the original time series

• Lower bounding of Euclidean distance



Symbolic Aggregate ApproXimation

•It consists of three steps
• Normalisation of time series

• The mean value is 0
• PAA transformation

• Divide time series into multiple segments, calculate 
the average for each segment, this value will 
replace all points in the segment

• Discrete symbolic representation
• Conversion time series to the alphabet symbols



Symbolic Aggregate ApproXimation



Symbolic Aggregate ApproXimation

• Normalized series has a normal distribution and 
shape of the Gaussian curve, we define the so-
called breaking points, which divide 
the Gaussian curve into equal parts, 
discretization generates symbols with equal 
probability.



Symbolic Aggregate ApproXimation



Symbolic Aggregate ApproXimation
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Symbolic Aggregate ApproXimation



Symbolic Aggregate ApproXimation
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Motif Discovery



Motif Discovery
• We define motifs, but how do we find them?

• Brute force search algorithm is just too slow.

• The most reference algorithm is based on a idea 
from bioinformatics, random projection* and the 
fact that SAX allows use to lower bound discrete 
representations of time series.



Motif Discovery



Motif Discovery



Motif Discovery



Motif Discovery



Visualization



Visualization

•Time Series Spiral
• Simple and intuitive
• Many extensions possible 
• Only useful on periodic data, and only 
then if you know the period



Visualization



Visualization



TSMiner
• www.tsminer.cz, www.tsminer.com, www.tsminer.eu 
• Multi-tier application for time series datamining

• MS SQL Server 2008 R2
• ASP.NET, .NET Framework 4.0



TSMiner



TSMiner



TSMiner



TSMiner



TSMiner



TSMiner



Main problems of time series analysis
• Pattern search w/o prior parameter setting
• Clustering of streamed data
• Time series merging – finding all shared

subsequences
• „Why“ analysis in classification and clustering, 

automatic generation of explanation
• Weighed representation of time series
• Visualization of large time series

(This slide was translated to English by V. Svátek)



Thanks for your attention


	Time Series Data MINING
	Outline of talk
	Time series
	Time series
	Time series
	Time series
	Time series
	Time series
	Time series
	Small digression - dendrogram
	Small digression - dendrogram
	Time series
	Time series
	Time series
	Time series
	Time series
	Time series similarity
	Time series similarity
	Time series similarity
	Time series similarity
	Time series similarity
	Time series similarity
	Time series similarity
	Time series similarity
	Time series similarity
	Time series similarity
	Time series similarity
	Time series similarity
	Time series similarity
	Time series similarity
	Time series similarity
	Time series similarity
	Time series similarity
	Time series similarity
	Snímek číslo 35
	Snímek číslo 36
	Time series similarity
	Time series similarity
	Time series similarity
	Time series similarity
	Time series similarity
	Time series similarity
	Time series similarity
	Time series – data preparation
	Time Series Representations
	Time Series Representations
	Time Series Representations
	Snímek číslo 48
	Snímek číslo 49
	Snímek číslo 50
	Snímek číslo 51
	Snímek číslo 52
	Time Series Representations
	Snímek číslo 54
	Snímek číslo 55
	Snímek číslo 56
	Symbolic Aggregate ApproXimation
	Symbolic Aggregate ApproXimation
	Symbolic Aggregate ApproXimation
	Symbolic Aggregate ApproXimation
	Symbolic Aggregate ApproXimation
	Symbolic Aggregate ApproXimation
	Symbolic Aggregate ApproXimation
	Symbolic Aggregate ApproXimation
	Motif Discovery
	Motif Discovery
	Motif Discovery
	Motif Discovery
	Motif Discovery
	Motif Discovery
	Visualization
	Visualization
	Visualization
	Visualization
	TSMiner
	TSMiner
	TSMiner
	TSMiner
	TSMiner
	TSMiner
	TSMiner
	Main problems of time series analysis
	Snímek číslo 83

