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Classical logic can be studied by Boolean algebras. Similarly, for any generalized logic
there is a corresponding algebra. For Lukasiewicz infinite valued logic this algebra is an
MV-algebra. Essentintially, aÅa ¹

 
a in MV-algebras. We are interested in injective

 
MV-

algebras.
An element b of an MV-algebra L is called an  n-divisor of an element  a of L, if
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If all elements have n-divisors for all natural n, then L is called divisible.         
An MV-algebra L is called injective if it is complete and divisible.  

Injective MV-algebra are sufficient to construct fuzzy IF-THEN inrefence  systems.

A canonical example of an injective MV-algebra is the Lukasiewicz algebra defined on
the real unit interval [0,1] and endowed with the following operations:

aÅb = min{a+b,1}, aÄb = max{a+b-1, 0}, 
a* = 1 –

 
a, a→b = min{1, 1 –

 
a + b}.

Introduction –
 

some theoretical results



Definition
 

Let L be an injective MV-algebra and let A be a non-void set. A fuzzy 
similarity S on A is such a binary fuzzy relation that, for each a, b, and c in A,
(i) S(a,a) = 1 (everything is similar to itself),
(ii) S(a,b) = S(b,a) (fuzzy similarity is symmetric),
(iii) S(a,b)ÄS(b,c) ≤

 
S(a,c) (fuzzy similarity is weakly transitive).

Recall an L-valued fuzzy subset X of A is an ordered couple (A,μX

 

), where the member-
ship function μX

 

:A→L tells the degree to which an element a in A belongs to the fuzzy
subset X.

Given a fuzzy subset (A,μX

 

), define a fuzzy relation S on A by    S(x,y) = μX

 

(x)↔μX

 

(y). 
This fuzzy relation is symmetric, reflexive and, transitive.    Therefore     

Any fuzzy set generates a fuzzy similarity

Proposition
 

Consider n injective MV-algebra L-valued fuzzy similariteis Si

 

, i = 1,...,n
on a set A. Then a fuzzy binary relation S on A defined by
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is an L-valued fuzzy similarity on A. More generally,
any weighted mean SIM is an L-valued fuzzy similarity,
where 
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The idea of partial similarity is not new. Indeed, in 1834
 

John Stuart Mill defined: 
If two objects A and B agree on k attributes and disagree on m attributes, then

mk
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can be taken to measure
 

the degree of similarity or
 

partial identity between
 

A and B. 

In fact, Mill defines an injective MV-algebra valued fuzzy similarity.                                

It is worth noting that, among all BL-algebras (in particular, among continuous t-norms)
injective MV-algebras are the only structures where ’the average of similarities is a
similarity’.

Therefore the following consideration can be done only
 

in such a structure.



An Algorithm to Construct Fuzzy IF-THEN Inference Systems
Let us now consider to a fuzzy rule based system

Rule 1: IF x1

 

is in A11

 

and
 

x2

 

is in A12 and
 

.... and
 

xm

 

is in A1m

 

THEN y is in B1
Rule 2: IF x1

 

is in A21

 

and
 

x2

 

is in A22

 

and
 

.... and
 

xm

 

is in A2m

 

THEN y is in B2
*
*
*

Rule n: IF x1

 

is in An1

 

and
 

x2

 

is in An2

 

and
 

.... and
 

xm

 

is in Anm

 

THEN y is in Bn

Here all Aij

 

.s and Bj

 

are fuzzy
 

but can be crips
 

actions, too. As usual, it is not necessary
that the rule base is complete, some rule combinations can be missing without causing
any difficulties. It is also possible that different IF-part causes equal THEN-part, but it
is not possible that a fixed IF-part causes two different THEN-parts. We will not need 
any kind of defuzzification

 
methods, everything is based on an experts knowledge and 

properties of injective MV-algebra valued similarity.
Step 1. Create the dynamics of the inference system, i.e. define the IF-THEN rules and
give shapes to the corresponding fuzzy sets.
Step 2. If necassary, give weights to various IF-parts to emphasize their importance.
Step 3. List the rules with respect to the mutual importance
Step 4. For each THEN-part, give a criteria on how to distinguish outputs with equal
degree of membership.



A general  framework for the inference system is now ready. 
Asssume then that we have  an actual input Actual

 
= (X1

 

,...,Xm

 

). A corresponding output
Y is counted in the following way.
(1)

 
Consider each IF-part of each rule as a crisp case, that is μAij

 

(xj ) = 1 holds.
(2)

 
Count the degree of similarity between Actual

 
and the IF-part of Rule i, i  = 1,...,n. 

Since μAij

 

(Xj )↔μAij

 

(xj )
 

= μAij

 

(Xj )↔1 = μAij

 

(Xj ), we only need to calculate averages 
or weighted averages of membership degrees!

(3) Fire an output Y such that μBk

 

(Y) = Similarity(Actual, Rule k)
 

corresponding to the
greatest similarity degree between the input Actual and the IF-part of a Rule k. If such 
a maximal rule is not unique, then use the preference list given

 
in Step (3), and if there 

are several such outputs Y, use a creteria given in Step (4).

In the rest part of our talk deals with real world case studies where we
have applied the above metodology and algorithm.

Note that counting the actual output can be viewed as an instance of Generalized Modus 
Ponens in the sense of  (injective MV-algebra valued) Lukasiewicz-Pavelka logic;

ba
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,,,
β

βαα

where α
 

corresponds to the IF-part of a Rule, β
 

corresponds to the THEN-part of the 
Rule, a is the value Similarity(Actual, Rule k)

 
and b = 1. This gives a many-valued logic

based theoretical justification to fuzzy inference.



Example 1. Signalized isolated pedestrian crossing

As long as there are no pedestrians, vehicles have
 

green
 

signal. If a pedestrian pushes a 
button and no cars

 
are approaching the pedestrian

 
will have

 
immediately green signal.

In case there are vehicles approaching and pedestrians waiting, then vehicles’s green
depends on the following factors:
* how long time

 
have pedestrians been waiting for

 
[a short/long/too long time]

* how many vehicles
 

are approaching
 

[few/some/many]
* what is the shortes cap

 
between approaching vehicles

 
[short/large]

The situation is updated after every half second.

Experienced traffic engineers described the above fuzzy set as follows

There are 18 rules in our fuzzy IF-THEN rule base (green
 

extension is prefered)
This corresponds to all possible rules (3x3x2 = 18), therefore, the rule base is complete.

An example of  a rule (given by traffic engineers):
IF (pedestrians’

 
waiting time = short) [weight = 1]

AND (approaching vehicles = few) [weight = 2]
AND (gab between approaching vehicles = short) [weight = 1]

THEN (extend vehicles green
 

signal)

The output is always a crisp action (red
 

or green). In a ’50-50 situation’
 

it is green.
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An example (assuming we would have only three rules)

3/8

Pedestrians’
 

waiting time =
 

14 sec Vehicles = 4 Gab between =
 

2 sec
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The actual traffic situation is most similar to the 2. rule, thus...
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Example 2. Determining Athlete’s Aerobic and Anaerobic Thresholds
100 metres sprinter

 
has to run a short distance very fact, therefore, he has to have much

training in the anaerobic zone (where his pulse close to maximal value), while
a long distance runner

 
needs endurance, thus, he needs training in the aerobic zone.

It is important for an athlete to test his aerobic and anaerobic
 

thresholds regularly,
these tests can be done e.g. on a running track ergometer, see  

Aerobic and anaerobic thresholds are functions of blood lactate
 

[mmol/l], ventilation;
CO2

 

[l/min] and
 

O2

 

uptake
 

[%]. They, in turn, are functions of heartbeat
 

[b/min]. 
A typical test starts with a 3 minutes worm up [pulse around 100 beat/min], then the 
load is increased every 2 -

 
3 minutes and blood lactate, ventilation,

 
CO2

 

, O2

 

uptake
and heartbeat are measured. A test lasts until volitional exhaustion [pulse near 200 
b/min],

 
this takes usually 20-30 minutes [A typical test protocol, see         ]

Lactate Ventilation Pulse Order
Aerobic * lowest value ↑ *VE increasing * max -

 
40 +/- lactate, VE

threshold *
 

∆=0.2 mmol/l * O2% highest 10 +/-
 

5 [b/min] pulse
Anaerobic * rapid increasing * VE clearly ↑ * max -

 
20 +/- lactate, VE

threshold * 3 mmol/l * VCO2

 

↑ 5 +/-
 

3 [b/min] VCO2,

*O2% decreasing O2%
* VE/VO2 ↑ VE/VO2
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To mimic a skilled sport medicine spacialist’s action
 

when she/he is determing an
aerobic threshold, we need only one rule (namely that one given above!)

Indeed, we count the degree of total fuzzy similarity between each measured value
and that given be the rule.

Clearly, all these consepts are fuzzy and can be expressed by fuzzy intervals. They are 
context dependent, too. For example ’Maximal pulse –

 
40’

 
depends on a respective 

measurement. We used the following membership function

FuzzyMaxMinus40.mw

Examples: open Matlab7
> cd

 
C:\Matlab7\Mika\hemi

> aek
Samples 33, 78
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