
Monitoring and Recovery of Semantic Web
Services

Roman Vaculin

Institute of Computer Science

Academy of Sciences of the Czech Republic

2

Outline
 Introduction (Motivation + Web Services + OWL-S)

 Semantic Monitoring
− Process model example and example problems

− Primitive (semantic) events & Event types derived from OWL-S

− Composite events & Event detection algebra

− Semantic filtering

− Event detection

 Exception handling and recovery
− Types of failures and responses to them

− Event types and event expressions

− Fault handling:

 fault handlers

 constraint violation handlers

 event handlers

 compensation constructs

 Conclusions & References

3

Motivation

A software agent executing a Web Service must be able to

1. Understand the semantics of the Web Service

2. Interpret the course and the results of the execution (and
respond to it)

3. Deal with erroneous states

4. Understand and interpret the sources of problems
– so that it can for example recover or avoid the situation next time if possible

Semantic Monitoring & Recovery as an extension of Semantic
Web Services offer an answer.

4

Introduction

 Importance of powerful monitoring, exception handling and
recovery techniques increases:

− operating environments of WS become more dynamic

− WS systems are expected to work in an autonomous or semi-autonomous fashion

− workflows are expected to be adaptive

 Little effort invested into monitoring & recovery of Sem. Web
Services (SWS)

− neither OWL-S nor WSMO provide support for exception handling and recovery

− recovery of SWS in combination with monitoring and traditional SWS techniques for
discovery and composition have great potential for increasing the autonomy of web
services systems

 WS standards for workflow (WS-BPEL) and transactions (WS-
Transaction, Business Transaction Protocol) solve the recovery
problem partially

− by providing support for some form of long running transactions (LRT)

− no support for monitoring and user/designer defined exceptional states

5

Web Services

 Defined by the W3C as :
− a software system designed to support interoperable Machine to Machine interaction

over a network

 Another definition:
− A task-oriented,

− XML-based business application

− Network-accessible via an API (programmable) from anywhere (location transparent)

 Semantic Web services:
− Basic idea:

 Use semantic languages for representation of WS capabilities and interaction with it

− Why?

 Automated understanding of data and service semantics (search)

 Automated methods of reconciling syntactic and semantic data heterogeneity
(interoperability)

 Reasoning on, and processing of retrieved and understood data and services to
accomplish individual goal(s) (automated composition)

6

OWL-S introduction

 Semantic Web Services Description language
− A language based on W3C recommendations
− Expressed in OWL

 Addresses web services
− Capability-based search and discovery
− Interaction specifications
− Execution

 Defines three components:
− Profile: describes what the service does
− Process model: how to interact with the service
− Grounding: links the process model to the specific implementation

infrastructure

7

OWL-S model

8

Service Profile

9

Service Process Model

10

Introduction to monitoring

 Monitoring mechanisms can be used
− during the execution to support a dynamic response to the given execution course

 fault / event handling

 execution recovery

 dynamic adaptation

− to support measuring and evaluation of Quality of Services (QoS)

− after the execution is finished for analysis and auditing

 applications in areas such as (Semantic) Business Process Management and Process
Mining

 Typically, primitive and composite events are distinguished:
− Primitive events: individual events emitted directly by various components of the

systems or external events that can be detected directly

− Composite events: complex events patterns consisting of several primitive events

Traditional vs. Semantic
Monitoring

 In most works on event monitoring:
− emitted events typically characterized by an event type

− events derived from the system implementation and represented on the syntactic level

− no declarative specification of event types and their parameters

 On the contrary, SWS frameworks
− provide means for explicit specification of WS capabilities, interfaces and interaction

protocols

 e.g., Inputs, Outputs, Preconditions, Effects, Classification, etc.

 done by annotating WS by concepts with a clear semantics defined in ontologies

− semantic descriptions can be also used for describing event types and event instances

 also data associated with events can be annotated by ontology concepts

 Advantages of Semantic Monitoring
− easy processing and sharing by SW agents and applications (clear semantics)

− more flexible event detection employing semantic reasoning

− advanced analysis after the execution:

 complex filtering and querying techniques exploiting the rich semantic interaction trace

12

Process model example

Domain
Ontologies

Shopping Service
Process Model

13

Examples monitoring problems

1.Event patterns using primitive events only:
a) Detect every call of a given operation (e.g., Logout).

b) Detect when a particular result is produced, e.g., Login fails since the username
cannot be verified.

c) Filter service calls with a given parameter type, e.g., LookupItem calls with the
category parameter that is an instance of Book class.

2.Complex event patterns:
a) Detect repeated occurrence of some event within a certain time, e.g., 3 unsuccessful

Login calls within 2 minutes.

b) Detect situations when the customer logs out without buying anything.

c) Detect service calls taking longer than a specified time (as a result a QoS metric might
be updated)

3.Off-line post-execution analysis:
a) Identify US customers shopping for Books that spent more than $1000 within 3 days.

b) Analyze popularity of some workflow (specified by some pattern and its features).

c) Analyze efficiency of a workflow (e.g., time to buy) or it effectiveness (i.e., if a given
sequence of calls leads to purchasing a product).

14

Primitive (semantic) events

 Primitive event occurrence is an instantaneous, atomic
occurrence of an interest at a point in time

 Primitive event occurrences are directly emitted by the system or
its components

− or is detected as an external event

 Each primitive event occurrence is an instance of some event
type and possibly has additional information in the form of
parameters

 We define
− primitive event types as concepts in an ontology and

− occurrences of primitive events as instances of ontology concepts

 OWL is used as an ontology language
− details of an event can be specified by referring to relevant parts of the executed

process model

− convenient for OWL-S aware applications since they can easily interpret the content of
events

15

Event types derived from
OWL-S

16

Primitive event example
<AtomicProcessEndEvent>

 <timestamp>2007-03-12T12:35:12</timestamp>

 <process rdf:resource="&shopService;Login">

 <input>
<ParameterValueBinding>

<toParameter rdf:resource="&shopService;username"/>
<dataValue>john</dataValue>

</ParameterValueBinding>
</input>
<input>
<ParameterValueBinding>

<toParameter rdf:resource="&shopService;password"/>
<dataValue>foo</dataValue>

</ParameterValueBinding>
</input>

 <output>
<ParameterValueBinding>

<toParameter rdf:resource="&shopService;status"/>
<dataValue>true</dataValue>

</ParameterValueBinding>
</output>

</AtomicProcessCallEvent>

17

Event detection algebra

 Event detection algebras present a mechanism for composite
events specification and detection

 In event algebras,
− primitive event types and

− a number of operators

− are used to form event expressions

− that represent an event pattern of interest

 In our case, primitive event types correspond to event types
defined in the events ontology

 During the system execution primitive event occurrences are
emitted

− event occurrences form event streams which are used to define the semantics of the
event algebra and for the purposes of the event detection

− e.g., a primitive event stream is a set of primitive event occurrences of the same
event type with different times

18

Algebra operators

 Composite events are defined by event expressions built from
primitive event types and algebra operators:

19

Semantic filtering

 To allow filtering of detected events based on their content we
extended event expressions with semantic filters

 Semantic filter is an expressions in the form of conjunction of
description logics atoms enriched with OWL datatypes and SWRL
built-ins

− Syntax is motivated by SWRL expressions that are used in SWRL rules antecedents

 Filter expressions allow us to match events represented as OWL
instances

 We assume existence of a knowledge base KB that is used for
evaluation of filter expressions

− An execution engine (the OWL-S Virtual Machine) maintains the KB during execution
of the process model and stores produced results in the KB

20

Filter expression

 A filter expression is a conjunction of atoms.

 An atom can be one of the following expressions:
− C(s) (concept atom),

− Po(s,t) (object property atom),

− Pd(s,d) (datatype property atom),

− sameAs(s,t) (same as atom),

− differentFrom(s,t) (different from atom)

− builtinID(d1,...,dn) (built-in atom),

− where C is an OWL class name (primitive event type), Po is an OWL object property,
Pd is an OWL datatype property, builtinID is an identifier of some SWRL built-in
predicate with arity n, d1,...,dn are variables or OWL data values, s and t are
variables or OWL individuals in the KB and d is a variable or an OWL data value.

 A filter expression holds with respect to the KB, if there exists
an assignment of individuals (from the KB) and data values to all
variables in the expression, such that all atoms hold.

21

Restricted event types

 In general, we allow every event expression to be associated with
a filter expression

− However, to maintain control over event detection we also introduce a restricted form
of event expressions in which filter expressions can be associated with primitive event
types only.

 Restricted event type is defined as follows:
 T= ?v : A[F]

where T is a name of the defined event type, A is a primitive
event type, ?v is a variable and F is a filter expression.

 Example (restricted type): The following expression defines a
new restricted event type Logout derived from the
AtomicProcessEndEvent event type:

 Logout = ?x : AtomicProcessEndEvent [

process(?x,?process) &
sameAs(?process,"&shopService;Logout")]

22

Restricted and extended event
expressions

 Restricted event expressions are event expressions in which
defined restricted types can be used in the same fashion as
primitive types.

 Example (restricted expression): ((Login; Logout) – Buy)

 Extended event expressions are event expressions in which
filter expression can be attached to any event subexpression.

− If A is a valid event expression, also A[F] and ?v: A[F] are valid expressions.

− F stands for a filter expression and ?v is a variable identifying an event occurrence
which was detected as an instance of A.

− In extended event expressions, restricted event types can be used as well.

 Example (extended expression):

(?log1 : Login; ?log2 : Login)
120

 [

 input(?log1, ?par1) & toParameter(?par1, ?par1Name) &
 sameAs(?par1Name, “&shopService;username”) & dataValue(?par1, ?userName1) &
 input(?log2, ?par2) & toParameter(?par2, ?par2Name) &
 sameAs(?par2Name, “&shopService;username”) & dataValue(?par2, ?userName1)]

23

Events detection

Detection process combines three techniques:

1.Detection of primitive types represented as OWL instances is
based on instance checking (i.e., deciding if an event occurrence
is of a given type)

2.Detection of composite events is based on event detection
trees

3.Semantic filters evaluation:
− after an event is detected for a given event expression, the attached filter must be

evaluated

 filter expression is internally translated into a SPARQL query which is than evaluated
against the current KB state

24

Composite events detection

 Composite event is caused
by occurrences of primitive
events

 Since events can occur
repeatedly, several
combinations of primitive
events can trigger a
composite event at a time.

 Restriction policies can
limit the number of detected
events

 Recent policy: If there are
more candidates, the one
with the maximal start time
is detected

− guarantees that if there is one
or more event occurrences of a
composite event, one of them
will be always detected

25

Event detection trees

 Present an efficient mechanism for
detection of composite events
defined by event expressions

 Each event expression represented
as a tree

− leaves represent event types occurring
in the expression and

− every other node represents one
composition operator

 Detection starts at the bottom with
primitive events and proceeds in the
bottom up direction by progressively
detecting occurrences of more
complex subexpression

 Whenever a new event occurrence is
detected by a node, the node notifies
its parent(s)

 Every node maintains a history of
event occurrences in its own buffer

Event detection trees example for
2 expressions; snapshot at time 5

Exception Handling and Recovery

Approach

 To provide means for specification of reliable, adaptive process
models, following is needed:

− standard fault handling

− mechanisms allowing a designer to define what situations are supposed to trigger an
erroneous state

 e.g., dealing with SLAs and other constraints

− compensation mechanisms

− powerful monitoring

 Solution: following extensions to the OWL-S specification
− explicit fault and event handlers

− constraint-violation handlers for associating constraint violation conditions with
appropriate recovery actions

− explicit recovery actions

− compensation actions and blocks for undoing effects of the partial work after a fault
has occurred

− semantic monitoring techniques for detection of erroneous states

28

Another Process Model Example

eMarket serviceProcess Model

1. Choose Seller finds
a seller with good
rating

2. Buy Item gets the
price quote and
continues with
Delivery and
Payment in parallel
and purchase
confirmation

Additional Constraints:

● For Get Rating two candidate services available:
● an unreliable but cheap public service (a preferred choice)

● a reliable and expensive commercial service (backup in
case of failure)

● Quote provided by the Get Quote service is valid
only for a fixed time

● If Buy Item does not finish within this time, it must be
restarted and a new quote must be obtained.

● If necessary,partial work needs to be compensated as part
of terminating and restarting the process.

29

Execution processing states

During the execution of a process model, every process is
in one of the following states:

1.uninitialized (process not started yet)

2.started (but not finished yet)

3.finished (successfully finished)

4.failed (a fault has occurred or the process was terminated).

When a failure occurs in a process
1. its state is switched from started to failed,

2. all its subprocesses are terminated and

3. the execution control is taken over by fault handling mechanisms.

30

Categories of erroneous
situations

1.Service invocation errors:
− Communication failure, serialization error, no / malformed response, time-out, etc.

2.OWL-S processing errors:
− Parsing/syntax problems with malformed OWL-S files

3.Process level execution errors:
– Erroneous situations caused by discrepancies on the process model level.

 e.g., a required input not provided by the client, a wrong input type provided, the
precondition of a process fails so that it cannot be executed, etc.

4.Application level errors:
− Erroneous states specific to the application logic of a web service as, e.g., no Seller is

found for a given product.

5.Constraint violations: resulting, e.g., from applicable SLAs
− Soft and hard constraints are distinguished.

 Hard constraint violation considered as an erroneous state that leads to termination
of the process and to triggering fault handling

 Soft constraint violation does not trigger an abnormal execution state.

31

Exception types

 Exception types for OWL-S are defined as concepts in the
exception types taxonomy

− extends the event types taxonomy

− event / exception types are concepts in an OWL ontology and

− events / exceptions as instances of ontology concepts

− details of an event can be specified by referring to relevant parts of the executed
process model

32

Exception Event Example

 Exception events instances contain context information
specifying reasons for the failure

<WrongInputTypeException>

<timestamp>2008-03-12T12:47:23</timestamp>

<process rdf:resource="&eMarket;FindSeller"/>

<parameter rdf:resource="&eMarket;product"/>

<expectedType>&shopOntology;ProducCategory</expectedType>

<invocationType>&xsd;string</invocationType>

<dataValue>Book</dataValue>

</WrongInputTypeException>

33

Supported actions to respond to
a failure

 Neutral actions: no effect on the state of the failed process
− e.g., execution of a web service, a logging action, etc.

 Recovery actions: restore the state of a failed process to the finished
state and return to a normal execution flow.

− retry(timeout) and retry(N)

− replaceBy(otherProcess)

 Fault emitting actions:
− throw(Fault) and re-throw

 Termination actions: terminate the whole process model
− hardTerminate terminates all processes without compensation,

− softTerminate executes compensation of finished processes before terminating

 Compensation actions: start the compensation of a process.
− compensate for invoking the compensation of the associated process

− compensateProcess(process) to start compensation of a specified process.

 Adaptation actions: modify the overall execution flow of the service
− e.g. replaceProcessBy(originalProcess, newProcess) or skip(processName).

34

Fault handlers

 A process can define a list of fault handlers that are used after a fault
has occurred to respond to a failure and possibly recover.

 A fault handler has the following form:

FaultHandler(FaultType [faultVariable]) { actions }

 A fault handler is triggered if the occurred failure is instance of the
FaultType (refers to type in the exception ontology)

 Processing rules: similar to programming languages
− If more handlers are defined for a process, they are processed in the order in which they were

declared. Only the first matching handler is triggered.

− If no handler is matched, the fault is propagated to the parent process.

− Allowed actions: all standard OWL-S control constructs, processes and all action categories
described on previous slides

− If no recovery action was successfully executed in the handler, the process remains in the failed
state after the fault handler finishes.

− An optional faultVariable can be used in the fault handler to access the fault occurrence and its
value.

35

Example Fault Handler

 The following handler retries the GetRating service 2 times if it times
out

AtomicProcess(GetRating) {

 FaultHandler(ServiceTimeoutException) {

 retry(2);

 }

}

 We use an abstract syntax instead of the XML serialization of OWL-S

36

Constraint violation handlers
(CV-handlers)

 A process can define a list of CV-handlers to detect possible hard
constraint violations which are considered as failures.

 A fault handler has the following form:

CV-Handler(event-expression [eventVariable]) { actions }

 Triggering a CV-handler results in an immediate termination of the
process for which the CV-handler was defined and to changing its state
from started to failed.

 Allowed actions: the same as in fault-handlers.

 Basic processing and detection:
− A CV-Handler gets triggered when its event-expression matches an occurrence of a (possibly

composite) event.

− CV-handlers are active in their own process and in all embedded processes.

 Motivated by the fact that when a constraint is imposed on some process, it typically applies
to all its embedded processes as well.

37

Example CV-handler

 The following CV-handler associated with BuyItem composite process
gets triggered 3 minutes after the process started

− it first compensates all finished activities

− and then retries the BuyItem service 3 times

CompositeProcess(BuyItem) {

 CV-Handler(BuyItemStarted + 3mins) {

 compensate;

 retry(3);

 }

}

 The BuyItemStarted is a primitive event type derived from the generic
CompositeProcessStartEvent type defined in the events ontology:

BuyItemStarted = ?x : CompositeProcessStartEvent [
 sameAs(?x.process,“&e-market;BuyItem”)

]

38

Event Handlers

 A process can define a list of event handlers to detect possible soft
constraint violations which are NOT considered as failures.

 A fault handler has the following form:

EventHandler(event-expression [eventVariable]) { actions }

 Allowed actions: with exception of recovery and compensation actions
the same as in fault-handlers.

 Basic processing and detection:
− event handler gets triggered when its event-expression matches an occurrence of a (possibly

composite) event.

− event handlers are active in their own process and in all embedded processes.

− triggering an event handler does not lead to the process termination.

39

Compensation Block

 A compensation construct allows a process designer to associate
every process with actions that can be used for undoing effects of
this process.

 A compensation construct has the following form:

Compensation { actions }

 Compensation is activated by calling the compensate or
compensateProcess actions,

 The compensation construct of a process is executed only when the
process has finished successfully.

− If the process is in a different state (e.g., failed), calling the compensation action for it
will have no effect.

 When no compensation construct is defined for a composite process, the
default compensation is used:

− compensating all finished embedded processes in the reverse chronological order of
their original invocation

40

CV-handlers processing

 CV-handlers are processed according to the following strategy:

(1) Active CV-handlers are considered in the top-down order,
starting with the root processes and progressing towards the
process that emitted the primitive event;

(2) if more CV-handlers are defined for one process they are
considered in the same order as they were defined;

(3) for one event occurrence only one CV-handler can get
triggered.

41

Complex recovery example

This example demonstrates complex recovery with embedded fault
handlers

AtomicProcess(GetRating) {

 FaultHandler(ServiceTimeoutException) {

 retry(2) {

 FaultHandler(ExceptionEvent) {

 replaceBy(CommercialGetRating);

 }

 }

 }

 }

AtomicProcess(CommercialGetRating) {

 FaultHandler(ServiceTimeoutException){ retry(5); }

 }

42

Conclusions

 Primitive and composite event specification and detection
mechanisms suitable for monitoring of semantic web services

 Augmented the event algebra with semantic filters
− a restricted variant (restricted expressions) suitable for runtime monitoring

 Mechanisms for fault handling and recovery of semantic web
services based on OWL-S introduced

− A novel combination of event handlers with constraint violation handlers that
both rely on and take advantage of powerful semantic monitoring techniques

− Explicit recovery actions play a critical role, since they enable a clear separation of
ordinary actions from actions that allow recovery of failed processes and restoration of
the normal flow

 Fully implemented in the OWL-S Virtual Machine
− a generic execution engine for OWL-S process models

− Preliminary tests show that detection of semantic events is feasible with current tools

43

Future work

 Efficiency and scalability
− large process models

− long running processes

 A strict SWRL based notation is awkward, we are considering a
'dot' based path notations

− ?log1.input.toParameter instead of
input(?log1, ?par1) & toParameter(?par1, ?par1Name)

 Introducing generic monitoring ontology layer(s) that would allow
monitoring in an system independent fashion

 Semantic-enabled recovery actions, such as
− ReplaceByEquivalent,

− Advanced Back & Forward Recovery

− Automatic Compensation

44

References

 Roman Vaculín, Katia Sycara: Specifying and Monitoring
Composite Events for Semantic Web Services. In The 5th
IEEE European Conference on Web Services. IEEE Computer
Society, November 26-28 2007.

 Roman Vaculín, Kevin Wiesner, Katia Sycara. Exception
handling and recovery of semantic web services. In the
IEEE International Conference on Networks and Services 2008.
IEEE Computer Society, March 16-21, 2008.

 Kevin Wiesner, Roman Vaculín, Martin Kollingbaum, and Katia
Sycara: Recovery Mechanisms for Semantic Web Services.
Accepted for the 8th IFIP International Conference on Distributed
Applications and Interoperable Systems, Springer Verlag, 2008.

