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Motivation

A software agent executing a Web Service must be able to

1. Understand the semantics of the Web Service 

2. Interpret the course and the results of the execution (and 
respond to it)

3. Deal with erroneous states

4. Understand and interpret the sources of problems 
– so that it can for example recover or avoid the situation next time if possible

Semantic Monitoring & Recovery as an extension of Semantic 
Web Services offer an answer.



4

Introduction

 Importance of powerful monitoring, exception handling and 
recovery techniques increases:

− operating environments of WS become more dynamic 

− WS systems are expected to work in an autonomous or semi-autonomous fashion

− workflows are expected to be adaptive

 Little effort invested into monitoring & recovery of Sem. Web 
Services (SWS)

− neither OWL-S  nor WSMO provide support for exception handling and recovery

− recovery of SWS in combination with monitoring and traditional SWS techniques for 
discovery and composition have great potential for increasing the autonomy of web 
services systems

 WS standards for workflow (WS-BPEL) and transactions (WS-
Transaction, Business Transaction Protocol) solve the recovery 
problem partially

− by providing support for some form of long running transactions (LRT)

− no support for monitoring and user/designer defined exceptional states
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Web Services

 Defined by the W3C as :
− a software system designed to support interoperable Machine to Machine interaction 

over a network

 Another definition:
− A task-oriented, 

− XML-based business application 

− Network-accessible via an API (programmable) from anywhere (location transparent)

 Semantic Web services:
− Basic idea:

 Use semantic languages for representation of WS capabilities and interaction with it

− Why?

 Automated understanding of data and service semantics (search)

 Automated methods of reconciling syntactic and semantic data heterogeneity 
(interoperability)

 Reasoning on, and processing of retrieved and understood data and services to 
accomplish individual goal(s) (automated composition) 
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OWL-S introduction

 Semantic Web Services Description language
− A language based on W3C recommendations
− Expressed in OWL

 Addresses web services 
− Capability-based search and discovery
− Interaction specifications
− Execution

 Defines three components:
− Profile: describes what the service does
− Process model: how to interact with the service 
− Grounding: links the process model to the specific implementation 

infrastructure
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OWL-S model
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Service Profile
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Service Process Model
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Introduction to monitoring

 Monitoring mechanisms can be used
− during the execution to support a dynamic response to the given execution course

 fault / event handling

 execution recovery

 dynamic adaptation

− to support measuring and evaluation of Quality of Services (QoS) 

− after the execution is finished for analysis and auditing

 applications in areas such as (Semantic) Business Process Management and Process 
Mining

 Typically, primitive and composite events are distinguished:
− Primitive events: individual events emitted directly by various components of the 

systems or external events that can be detected directly

− Composite events: complex events patterns consisting of several primitive events



  

Traditional vs. Semantic 
Monitoring

 In most works on event monitoring:
− emitted events typically characterized by an event type  

− events derived from the system implementation and represented on the syntactic level

− no declarative specification of event types and their parameters

 On the contrary, SWS frameworks 
− provide means for explicit specification of WS capabilities, interfaces and interaction 

protocols 

 e.g., Inputs, Outputs, Preconditions, Effects, Classification, etc.

 done by annotating WS by concepts with a clear semantics defined in ontologies

− semantic descriptions can be also used for describing event types and event instances 

 also data associated with events can be annotated by ontology concepts

 Advantages of Semantic Monitoring
− easy processing and sharing by SW agents and applications (clear semantics)

− more flexible event detection employing semantic reasoning 

− advanced analysis after the execution:

 complex filtering and querying techniques exploiting the rich semantic interaction trace 
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Process model example

Domain 
Ontologies

Shopping Service 
Process Model
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Examples monitoring problems 

1.Event patterns using primitive events only:
a) Detect every call of a given operation (e.g., Logout).

b) Detect when a particular result is produced, e.g., Login fails since the username 
cannot be verified.

c) Filter service calls with a given parameter type, e.g., LookupItem calls with the 
category parameter that is an instance of Book class. 

2.Complex event patterns:
a) Detect repeated occurrence of some event within a certain time, e.g., 3 unsuccessful 

Login calls within 2 minutes. 

b) Detect situations when the customer logs out without buying anything. 

c) Detect service calls taking longer than a specified time (as a result a QoS metric might 
be updated) 

3.Off-line post-execution analysis:
a) Identify US customers shopping for Books that spent more than $1000 within 3 days.

b) Analyze popularity of some workflow (specified by some pattern and its features).

c) Analyze efficiency of a workflow (e.g., time to buy) or it effectiveness (i.e., if a given 
sequence of calls leads to purchasing a product).
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Primitive (semantic) events

 Primitive event occurrence is an instantaneous, atomic 
occurrence of an interest at a point in time

 Primitive event occurrences are directly emitted by the system or 
its components

− or is detected as an external event

 Each primitive event occurrence is an instance of some event 
type and possibly has additional information in the form of 
parameters

 We define 
− primitive event types as concepts in an ontology and 

− occurrences of primitive events as instances of ontology concepts

 OWL is used as an ontology language
− details of an event can be specified by referring to relevant parts of the executed 

process model

− convenient for OWL-S aware applications since they can easily interpret the content of 
events
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Event types derived from
OWL-S
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Primitive event example
<AtomicProcessEndEvent>

  <timestamp>2007-03-12T12:35:12</timestamp>

  <process rdf:resource="&shopService;Login">

  <input>
<ParameterValueBinding>

<toParameter rdf:resource="&shopService;username"/>
<dataValue>john</dataValue>

</ParameterValueBinding>
</input>
<input>
<ParameterValueBinding>

<toParameter rdf:resource="&shopService;password"/>
<dataValue>foo</dataValue>

</ParameterValueBinding>
</input>

  <output>
<ParameterValueBinding>

<toParameter rdf:resource="&shopService;status"/>
<dataValue>true</dataValue>

</ParameterValueBinding>
</output>

</AtomicProcessCallEvent>
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Event detection algebra

 Event detection algebras present a mechanism for composite 
events specification and detection

 In event algebras, 
− primitive event types and 

− a number of operators 

− are used to form event expressions 

− that represent an event pattern of interest

 In our case, primitive event types correspond to event types 
defined in the events ontology

 During the system execution primitive event occurrences are 
emitted

− event occurrences form event streams which are used to define the semantics of the 
event algebra and for the purposes of the event detection

− e.g., a primitive event stream is a set of primitive event occurrences of the same 
event type with different times
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Algebra operators

 Composite events are defined by event expressions built from 
primitive event types and algebra operators: 
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Semantic filtering

 To allow filtering of detected events based on their content we 
extended event expressions with semantic filters

 Semantic filter is an expressions in the form of conjunction of 
description logics atoms enriched with OWL datatypes and SWRL 
built-ins

− Syntax is motivated by SWRL expressions that are used in SWRL rules antecedents

 Filter expressions allow us to match events represented as OWL 
instances

 We assume existence of a knowledge base KB that is used for 
evaluation of filter expressions

− An execution engine (the OWL-S Virtual Machine) maintains the KB during execution 
of the process model and stores produced results in the KB
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Filter expression

 A filter expression is a conjunction of atoms. 

 An atom can be one of the following expressions: 
− C(s) (concept atom), 

− Po(s,t) (object property atom), 

− Pd(s,d) (datatype property atom), 

− sameAs(s,t) (same as atom), 

− differentFrom(s,t) (different from atom) 

− builtinID(d1,...,dn) (built-in atom), 

− where C is an OWL class name (primitive event type), Po is an OWL object property, 
Pd is an OWL datatype property, builtinID is an identifier of some SWRL built-in 
predicate with arity n, d1,...,dn are variables or OWL data values, s and t are 
variables or OWL individuals in the KB and d is a variable or an OWL data value.

 A filter expression holds with respect to the KB, if there exists 
an assignment of individuals (from the KB) and data values to all 
variables in the expression, such that all atoms hold.
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Restricted event types

 In general, we allow every event expression to be associated with 
a filter expression

− However, to maintain control over event detection we also introduce a restricted form 
of event expressions in which filter expressions can be associated with primitive event 
types only.

 Restricted event type is defined as follows:
  T= ?v : A[F] 

where T is a name of the defined event type, A is a primitive 
event type, ?v is a variable and F is a filter expression.

 Example (restricted type): The following expression defines a 
new restricted event type Logout derived from the 
AtomicProcessEndEvent event type:
 
  Logout = ?x : AtomicProcessEndEvent [ 

process(?x,?process) & 
sameAs(?process,"&shopService;Logout")]
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Restricted and extended event 
expressions

 Restricted event expressions are event expressions in which 
defined restricted types can be used in the same fashion as 
primitive types. 

 Example (restricted expression): ((Login; Logout) – Buy) 

 Extended event expressions are event expressions in which 
filter expression can be attached to any event subexpression. 

− If A is a valid event expression, also A[F] and ?v: A[F] are valid expressions. 

− F stands for a filter expression and ?v is a variable identifying an event occurrence 
which was detected as an instance of A. 

− In extended event expressions, restricted event types can be used as well.

 Example (extended expression): 

(?log1 : Login; ?log2 : Login)
120

 [ 

    input(?log1, ?par1) & toParameter(?par1, ?par1Name) &  
           sameAs(?par1Name, “&shopService;username”) & dataValue(?par1, ?userName1) & 
    input(?log2, ?par2) & toParameter(?par2, ?par2Name) & 
           sameAs(?par2Name, “&shopService;username”) & dataValue(?par2, ?userName1)] 
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Events detection

Detection process combines three techniques:

1.Detection of primitive types represented as OWL instances is 
based on instance checking (i.e., deciding if an event occurrence 
is of a given type)

2.Detection of composite events is based on event detection 
trees 

3.Semantic filters evaluation: 
− after an event is detected for a given event expression, the attached filter must be 

evaluated 

 filter expression is internally translated into a SPARQL query which is than evaluated 
against the current KB state
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Composite events detection

 Composite event is caused 
by occurrences of primitive 
events

 Since events can occur 
repeatedly, several 
combinations of primitive 
events can trigger a 
composite event at a time.

 Restriction policies can 
limit the number of detected 
events

 Recent policy: If there are 
more candidates, the one 
with the maximal start time 
is detected

− guarantees that if there is one 
or more event occurrences of a 
composite event, one of them 
will be always detected
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Event detection trees

 Present an efficient mechanism for 
detection of composite events 
defined by event expressions

 Each event expression represented 
as a tree 

− leaves represent event types occurring 
in the expression and 

− every other node represents one 
composition operator

 Detection starts at the bottom with 
primitive events and proceeds in the 
bottom up direction by progressively 
detecting occurrences of more 
complex subexpression

 Whenever a new event occurrence is 
detected by a node, the node notifies 
its parent(s)

 Every node maintains a history of 
event occurrences in its own buffer

Event detection trees example for 
2 expressions; snapshot at time 5



Exception Handling and Recovery



  

Approach

 To provide means for specification of reliable, adaptive process 
models, following is needed:

− standard fault handling

− mechanisms allowing a designer to define what situations are supposed to trigger an 
erroneous state

 e.g., dealing with SLAs and other constraints

− compensation mechanisms

− powerful monitoring

 Solution: following extensions to the OWL-S specification
− explicit fault and event handlers

− constraint-violation handlers for associating constraint violation conditions with 
appropriate recovery actions

− explicit recovery actions

− compensation actions and blocks for undoing effects of the partial work after a fault 
has occurred

− semantic monitoring techniques for detection of erroneous states



28

Another Process Model Example

eMarket serviceProcess Model

1. Choose Seller finds 
a seller with good 
rating

2. Buy Item gets the 
price quote and 
continues with 
Delivery and 
Payment in parallel 
and purchase 
confirmation

Additional Constraints:

● For Get Rating two candidate services available: 
● an unreliable but cheap public service (a preferred choice)

● a reliable and expensive  commercial service (backup in 
case of failure)

● Quote provided by the Get Quote service is valid 
only for a fixed time

● If Buy Item does not finish within this time, it must be 
restarted and a new quote must be obtained. 

● If necessary,partial work needs to be compensated as part 
of terminating and restarting the process.
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Execution processing states

During the execution of a process model, every process is 
in one of the following states:

1.uninitialized (process not started yet)

2.started (but not finished yet) 

3.finished (successfully finished)

4.failed (a fault has occurred or the process was terminated).

When a failure occurs in a process 
1. its state is switched from started to failed, 

2. all its subprocesses are terminated and 

3. the execution control is taken over by fault handling mechanisms.



30

Categories of erroneous 
situations

1.Service invocation errors: 
− Communication failure, serialization error, no / malformed  response, time-out, etc.

2.OWL-S processing errors: 
− Parsing/syntax problems with malformed OWL-S files

3.Process level execution errors: 
– Erroneous situations caused by discrepancies on the process model level. 

 e.g., a required input not provided by the client, a wrong input type provided, the 
precondition of a process fails so that it cannot be executed, etc.

4.Application level errors: 
− Erroneous states specific to the application logic of a web service as, e.g., no Seller is 

found for a given product.

5.Constraint violations:  resulting, e.g., from applicable SLAs
− Soft and hard constraints are distinguished. 

 Hard constraint violation considered as an erroneous state that leads to termination 
of the process and to triggering fault handling

 Soft constraint violation does not trigger an abnormal execution state. 
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Exception types

 Exception types for OWL-S are defined as concepts in the 
exception types taxonomy

− extends the event types taxonomy

− event / exception types are concepts in an OWL ontology and 

− events / exceptions as instances of ontology concepts

− details of an event can be specified by referring to relevant parts of the executed 
process model
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Exception Event Example

 Exception events instances contain context information 
specifying reasons for the failure

<WrongInputTypeException>

<timestamp>2008-03-12T12:47:23</timestamp>

<process rdf:resource="&eMarket;FindSeller"/>

<parameter rdf:resource="&eMarket;product"/>

<expectedType>&shopOntology;ProducCategory</expectedType>

<invocationType>&xsd;string</invocationType>

<dataValue>Book</dataValue>

</WrongInputTypeException>
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Supported actions to respond to 
a failure

 Neutral actions: no effect on the state of the failed process
− e.g., execution of a web service, a logging action, etc.

 Recovery actions: restore the state of a failed process to the finished 
state and return to a normal execution flow.

− retry(timeout) and retry(N)

− replaceBy(otherProcess)

 Fault emitting actions:
− throw(Fault) and re-throw

 Termination actions: terminate the whole process model
− hardTerminate terminates all processes without compensation, 

− softTerminate executes compensation of finished processes before terminating

 Compensation actions: start the compensation of a process.
− compensate for invoking the compensation of the associated process

− compensateProcess(process) to start compensation of a specified process.

 Adaptation actions: modify the overall execution flow of the service
− e.g. replaceProcessBy(originalProcess, newProcess) or skip(processName).
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Fault handlers

 A process can define a list of fault handlers that are used after a fault 
has occurred to respond to a failure and possibly recover.

 A fault handler has the following form: 

FaultHandler(FaultType [faultVariable]) { actions }

 A fault handler is triggered if the occurred failure is instance of the 
FaultType (refers to type in the exception ontology)

 Processing rules: similar to programming languages
− If more handlers are defined for a process, they are processed in the order in which they were 

declared. Only the first matching handler is triggered. 

− If no handler is matched, the fault is propagated to the parent process. 

− Allowed actions: all standard OWL-S control constructs, processes and all action categories 
described on previous slides

− If no recovery action was successfully executed in the handler, the process remains in the failed 
state after the fault handler finishes. 

− An optional faultVariable can be used in the fault handler to access the fault occurrence and its 
value.
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Example Fault Handler

 The following handler retries the GetRating service 2 times if it times 
out

AtomicProcess(GetRating) {

 FaultHandler(ServiceTimeoutException) {

     retry(2);

   }

}

 We use an abstract syntax instead of the XML serialization of OWL-S



36

Constraint violation handlers 
(CV-handlers)

 A process can define a list of CV-handlers to detect possible hard 
constraint violations which are considered as failures.

 A fault handler has the following form: 

CV-Handler(event-expression  [eventVariable]) { actions }

 Triggering a CV-handler results in an immediate termination of the 
process for which the CV-handler was defined and to changing its state 
from started to failed. 

 Allowed actions: the same as in fault-handlers. 

 Basic processing and detection:
− A CV-Handler gets triggered when its event-expression matches an occurrence of a (possibly 

composite) event.

− CV-handlers are active in their own process and in all embedded processes.

 Motivated by the fact that when a constraint is imposed on some process, it typically applies 
to all its embedded processes as well.
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Example CV-handler

 The following CV-handler associated with BuyItem composite process 
gets triggered 3 minutes after the process started 

− it first compensates all finished activities

− and then retries the BuyItem service 3 times 

CompositeProcess(BuyItem) {

   CV-Handler(BuyItemStarted + 3mins) {

      compensate; 

      retry(3);

   }

}

 The BuyItemStarted is a primitive event type derived from the generic 
CompositeProcessStartEvent type defined in the events ontology:

BuyItemStarted = ?x : CompositeProcessStartEvent [
 sameAs(?x.process,“&e-market;BuyItem”)

]
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Event Handlers

 A process can define a list of event handlers to detect possible soft 
constraint violations which are NOT considered as failures.

 A fault handler has the following form: 

EventHandler(event-expression  [eventVariable]) { actions }

 Allowed actions: with exception of recovery and compensation actions 
the same as in fault-handlers. 

 Basic processing and detection:
− event handler gets triggered when its event-expression matches an occurrence of a (possibly 

composite) event.

− event handlers are active in their own process and in all embedded processes.

− triggering an event handler does not lead to the process termination.
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Compensation Block

 A compensation construct allows a process designer to associate 
every process with actions that can be used for undoing effects of 
this process. 

 A compensation construct has the following form:

Compensation  { actions }

 Compensation is activated by calling the compensate or 
compensateProcess actions, 

 The compensation construct of a process is executed only when the 
process has finished successfully. 

− If the process is in a different state (e.g., failed), calling the compensation action for it 
will have no effect.

 When no compensation construct is defined for a composite process, the 
default compensation is used:

− compensating all finished embedded processes in the reverse chronological order of 
their original invocation
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CV-handlers processing

 CV-handlers are processed according to the following strategy: 

(1) Active CV-handlers are considered in the top-down order, 
starting with the root processes and progressing towards the 
process that emitted the primitive event; 

(2) if more CV-handlers are defined for one process they are 
considered in the same order as they were defined;

(3) for one event occurrence only one CV-handler can get 
triggered.
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Complex recovery example

This example demonstrates complex recovery with embedded fault 
handlers

AtomicProcess(GetRating) {

 FaultHandler(ServiceTimeoutException) {

    retry(2) {

      FaultHandler(ExceptionEvent) {

            replaceBy(CommercialGetRating);

         }

       }

    }

  }

 
AtomicProcess(CommercialGetRating) {

    FaultHandler(ServiceTimeoutException){ retry(5); }

  }
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Conclusions

 Primitive and composite event specification and detection 
mechanisms suitable for monitoring of semantic web services

 Augmented the event algebra with semantic filters
− a restricted variant (restricted expressions) suitable for runtime monitoring

 Mechanisms for fault handling and recovery of semantic web 
services based on OWL-S introduced

− A novel combination of event handlers with constraint violation handlers that 
both rely on and take advantage of powerful semantic monitoring techniques

− Explicit recovery actions play a critical role, since they enable a clear separation of 
ordinary actions from actions that allow recovery of failed processes and restoration of 
the normal flow

 Fully implemented in the OWL-S Virtual Machine
− a generic execution engine for OWL-S process models

− Preliminary tests show that detection of semantic events is feasible with current tools
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Future work

 Efficiency and scalability
− large process models

− long running processes

 A strict SWRL based notation is awkward, we are considering a 
'dot' based path notations

− ?log1.input.toParameter instead of  
input(?log1, ?par1) & toParameter(?par1, ?par1Name)

 Introducing generic monitoring ontology layer(s) that would allow 
monitoring in an system independent fashion

 Semantic-enabled recovery actions, such as
− ReplaceByEquivalent, 

− Advanced Back & Forward Recovery

− Automatic Compensation
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