Learning Expressive First Order Rules -Introduction to Inductive Logic Programming (and a bit beyond that...)

Funded by the Ministry of Education and Research, grant 01IS18056B (TraMeExCo)

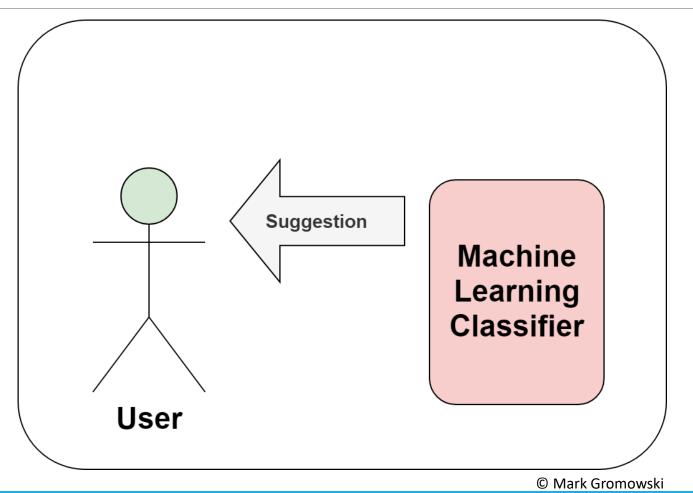
LEARNING EXPRESSIVE FIRST ORDER RULES, BETTINA FINZEL, VSE PRAGUE, 22.10.2019

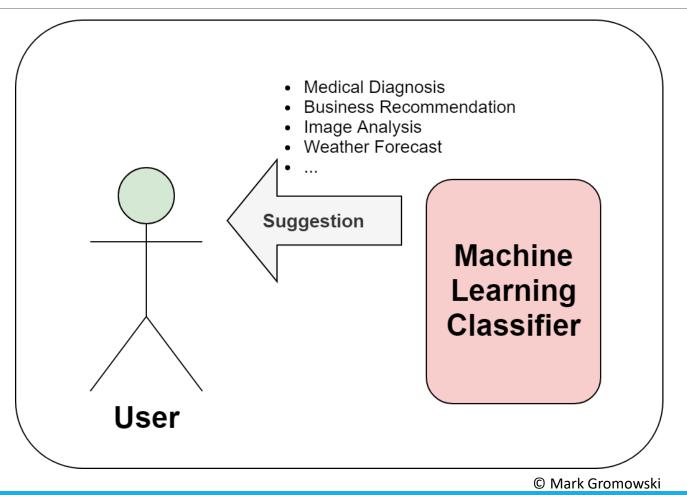
Speaker

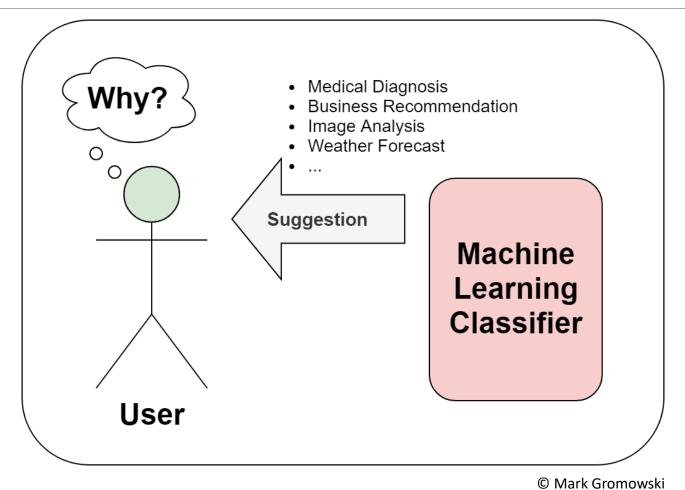
M. Sc. Bettina Finzel Cognitive Systems University of Bamberg

10/2012 – 03/2017 Applied Computer Science Study, University of Bamberg (B.Sc.) 04/2018 – 09/2018 Internship at MHP Management- und IT-Beratung GmbH 10/2016 – 09/2019 Applied Computer Science Study, University of Bamberg (M.Sc.) Since 10/2018 doctoral candidate in the research project Transparent Medical Expert Companion (TraMeExCo)

Main research interests: interactive machine learning for the medical domain





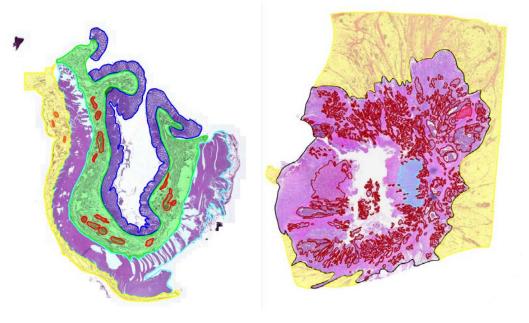


Bundesministerium für Bildung und Forschung

TraMeExCo

Explaining Classifier Decisions

- Task: classify the stage of tumors in microscopy images to diagnose colon cancer and make the decision transparent (what and why?)
- Data:
 - scans of colon biopsy
 - different tissues in one example scan
 - spatial relationships
 - contains, touches
 - and more
 - mislabeled examples (noise)



- Task: classify the stage of tumors in microscopy images to diagnose colon cancer and make the decision transparent (what and why?)
- Situation:
 - Convolutional Neural Networks (CNNs) are popular for image classification due to high performance
 - Demand for comprehensive, transparent and trust-worthy machine learning approaches rises
 - A CNN's decision is **not inherently transparent** to humans
 - Methods are needed to explain a deep neural network's decision

Bundesministerium für Bildung und Forschung

Explaining Classifier Decisions

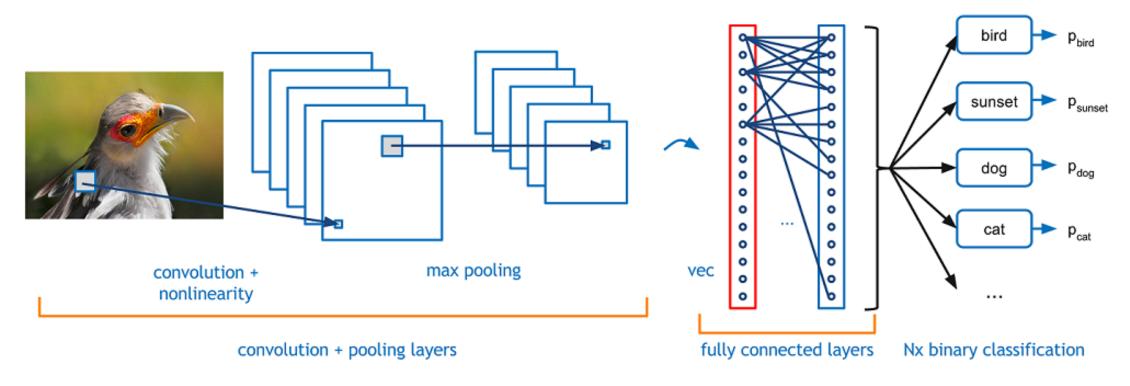
- Task: classify the stage of tumors in microscopy images to diagnose colon cancer and make the decision transparent (what and why?)
- Methods:
 - For classification:
 - Convolutional Neural Networks (Black-Box)
 - Inductive Logic Programming (White-Box)
 - For Explaining Classifier Decisions:
 - Visual Explanation Methods: Layer-wise Relevance Propagation (LRP) and Local Interpretable Model-agnostic Explanations (LIME)
 - Verbal Explanation Method: Inductive Logic Programming (ILP)

- Task: classify the stage of tumors in microscopy images to diagnose colon cancer and make the decision transparent (what and why?)
- Methods:
 - For classification:
 - Convolutional Neural Networks (Black-Box)
 - Inductive Logic Programming (White-Box)
 - For Explaining Classifier Decisions:
 - Visual Explanation Methods: Layer-wise Relevance Propagation (LRP) and Local Interpretable Model-agnostic Explanations (LIME)
 - Verbal Explanation Method: Inductive Logic Programming (ILP)

Bundesministerium für Bildung und Forschung

Explaining Classifier Decisions

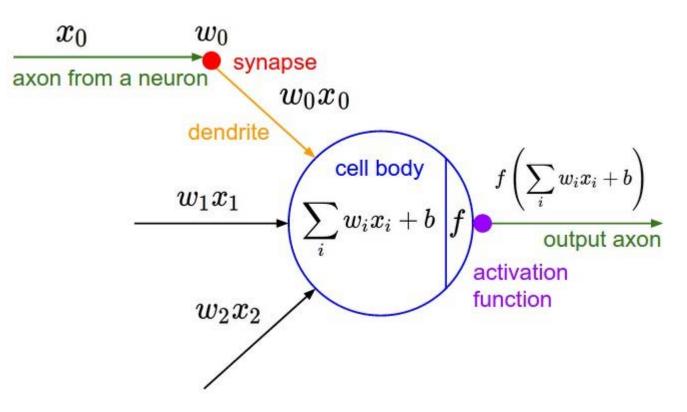
Convolutional Neural Networks



Bundesministerium für Bildung und Forschung

Explaining Classifier Decisions

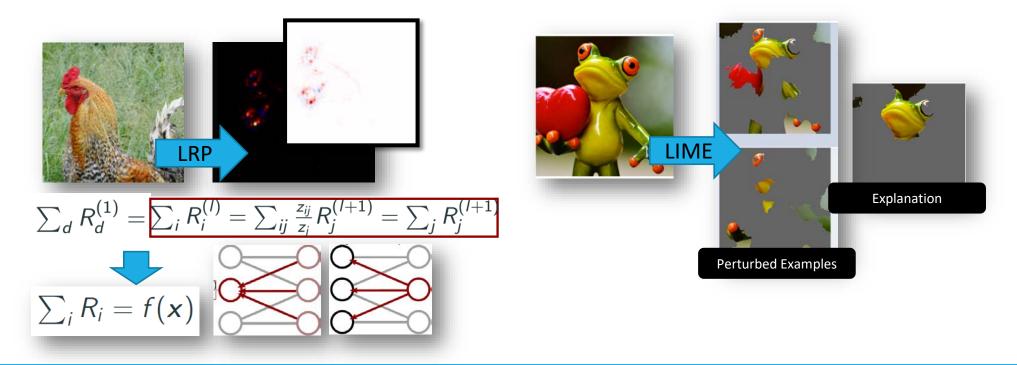
Convolutional Neural Networks



TraMeExCo

- Task: classify the stage of tumors in microscopy images to diagnose colon cancer and make the decision transparent (what and why?)
- Methods:
 - For classification:
 - Convolutional Neural Networks (Black-Box)
 - Inductive Logic Programming (White-Box)
 - For Explaining Classifier Decisions:
 - Visual Explanation Methods: Layer-wise Relevance Propagation (LRP) and Local Interpretable Model-agnostic Explanations (LIME)
 - Verbal Explanation Method: Inductive Logic Programming (ILP)

- Layer-wise Relevance Propagation (Bach et al., 2015)
- Local Interpretable Model-agnostic Explanations (Rebeiro et al., 2017)



Bundesministerium für Bildung und Forschung

Explaining Classifier Decisions

- Task: classify the stage of tumors in microscopy images to diagnose colon cancer and make the decision transparent (what and why?)
- Methods:
 - For classification:
 - Convolutional Neural Networks (Black-Box)
 - Inductive Logic Programming (White-Box)
 - For Explaining Classifier Decisions:
 - Visual Explanation Methods: Layer-wise Relevance Propagation (LRP) and Local Interpretable Model-agnostic Explanations (LIME)
 - Verbal Explanation Method: Inductive Logic Programming (ILP)

Bundesministerium **TraMeExCo**

Explaining Classifier Decisions

Why Inductive Logic Programming?

Class $X \leftarrow to(B, A), to(B, C), to(C, A)$

- Comprehensible Classifier (Schmid et al. 2017 & Schmid 2018)
- LRP and LIME are limited in expressiveness: no relationships, only conjunction of **visual** features
 - Concepts in the real world are often characterized by relational features!
 - \rightarrow Relational Learning



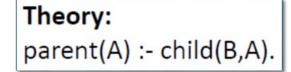
Bundesministerium und Forschung

Explaining Classifier Decisions

Why Inductive Logic Programming?

- ILP can verbally express relations, with and without variables, negation and even recursion \rightarrow more expressive explanations
- ILP can be combined with LIME and LRP (Rabold et al. 2018 & Finzel et al. 2019) to approximate an explanation for a CNNs decision
 - Extraction of spatial relationships between superpixels and aggregations of pixels with similar relevance
 - Learned an explanation of a target concept with ILP based on this input

Abduction	Induction	Deduction	
Result: Scan1 is	Case: Scan1 con-	Rule: All scans	
cancerous.	tains a tumor.	that contain a	
		tumor are can-	
		cerous.	
Rule: All scans	Result: Scan1 is	Case: Scan1 con-	
that contain a	cancerous.	tains a tumor.	
tumor are can-			
cerous.			
Case: Scan1 con-	Rule: All scans	Result: Scan1 is	
tains a tumor.	that contain a	cancerous.	
	tumor are can-		
	cerous.		



Backgr. Knowledge:

child(ian,debbie). child(nate,debbie). child(bethany,debbie).

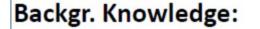
child(ian,neal). child(nate,neal). child(bethany,neal).

parent(debbie). parent(neal).

LEARNING EXPRESSIVE FIRST ORDER RULES, BETTINA FINZEL, VSE PRAGUE, 22.10.2019

Abduction	Induction	Deduction	
Result: Scan1 is	Case: Scan1 con-	Rule: All scans	
cancerous.	tains a tumor.	that contain a	
		tumor are can-	
		cerous.	
Rule: All scans	Result: Scan1 is	Case: Scan1 con-	
that contain a	cancerous.	tains a tumor.	
tumor are can-			
cerous.			
Case: Scan1 con-	Rule: All scans	Result: Scan1 is	
tains a tumor.	that contain a	cancerous.	
	tumor are can-		
	cerous.		

19



child(ian,debbie). child(nate,debbie). child(bethany,debbie).

child(ian,neal). child(nate,neal). child(bethany,neal). Positive Examples (Target)

parent(debbie). parent(neal).

Theory:
parent(A) :- child(B,A).

Given

- A set of observations represented in a language L_E consisting of:
 - * a set of positive examples E^+
 - $\ast\,$ a set of negative examples E^-
- A background knowledge or *domain theory* BK (which corresponds to the knowledge base)
- A hypothesis language L_H that specifies the clauses that are allowed in the hypotheses set H
- A covers relation covers(e, H, BK) which determines the classification of the example e with respect to H and BK

21

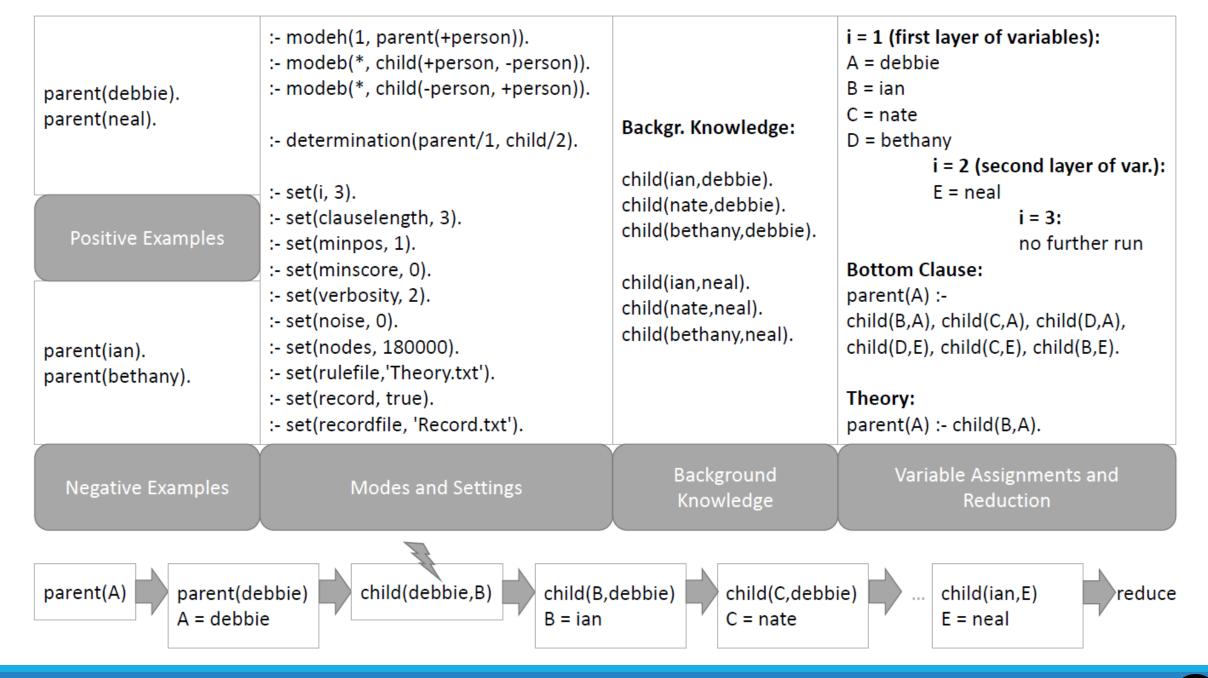
Find a hypothesis $h \in L_H$ such that (given BK) h covers all and no negative examples by fulfilling the following conditions:

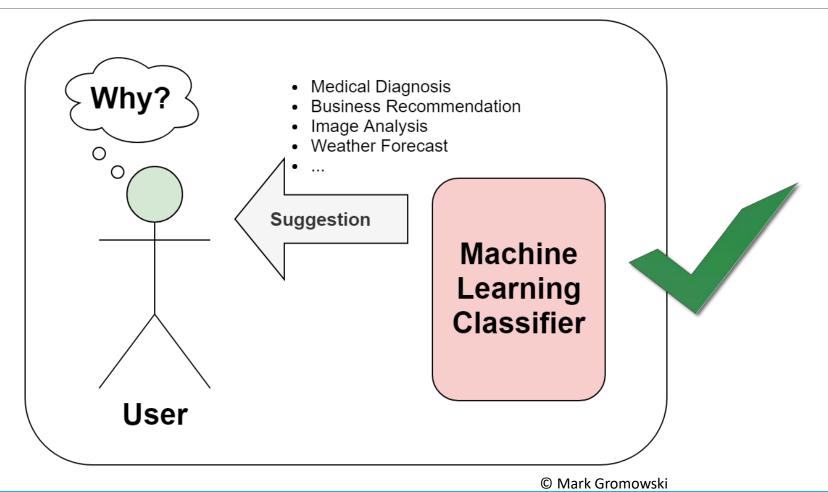
 $- \forall e \in E^+ : BK \cup h \models e \ (h \text{ is complete})$

 $- \forall e \in E^- : BK \cup h \nvDash e \ (h \text{ is } consistent)$

Aleph (A Learning Engine for Proposing Hypotheses)

- Framework that uses mode-directed inverse entailment (Srinivasan, 2006) to derive theories from background knowledge and examples
- Five steps:
 - **Selection**: select one initial example to be generalized, if no further examples, stop.
 - **Saturation**: construct most specific clause from candidate literals taken from the background knowledge in accordance to given language restrictions (modes)
 - **Reduction**: find a clause more general than the bottom clause (search for subset with best score)
 - Cover Removal: add clause with best score to the theory and remove all examples covered

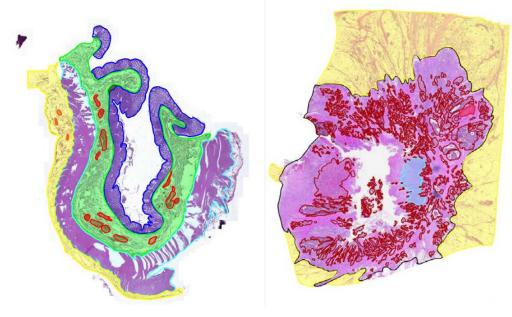




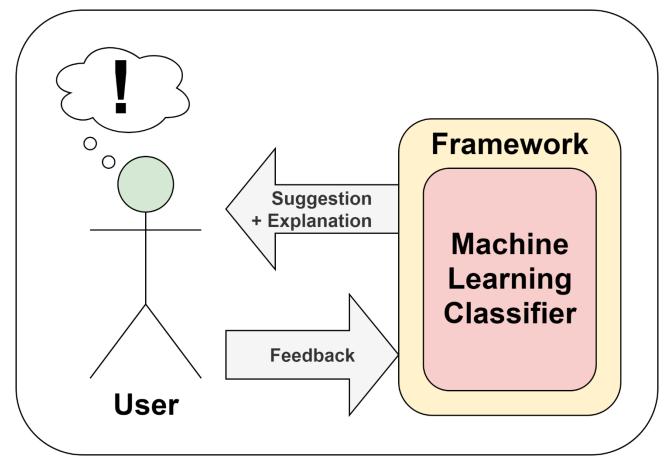
Bundesministerium für Bildung und Forschung

Explaining Classifier Decisions

- Task: classify the stage of tumors in microscopy images to diagnose colon cancer and make the decision transparent (what and why?)
- Data:
 - scans of colon biopsy
 - different tissues in one example scan
 - spatial relationships
 - contains, touches
 - and more
 - mislabeled examples (noise)



Correcting Classifier Decisions



Improving the Joint Performance Through Cooperative Learning (Mutual Explanation)

- Explainability and comprehensibility

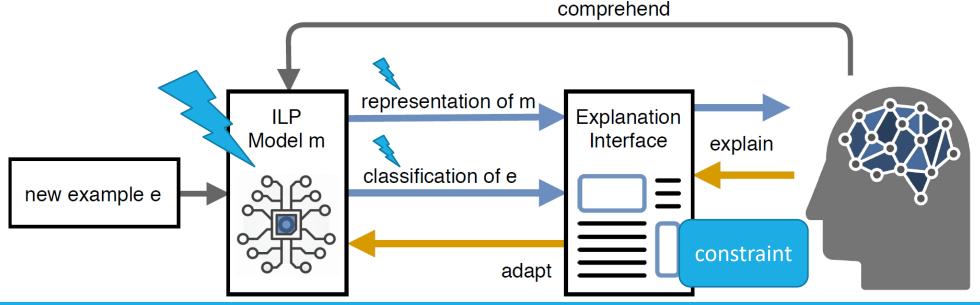
 Can I trust the classifier? Does the system make the right decision? How did it derive its decision?
- Correctability → I want to control the system and interactively give corrective feedback in order to make the system decide differently



27

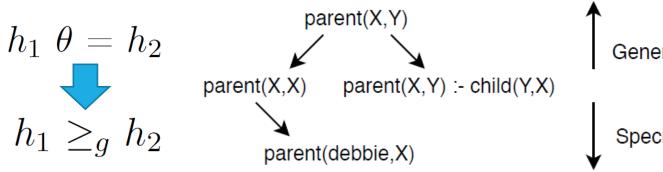
Challenge: Noise

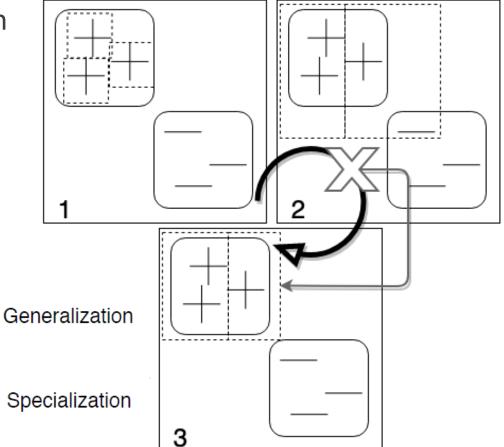
- Two types: label noise and attribute noise
- Can affect accuracy, computational time to generalize from data, complexity and interpretability of a classifier (reduced explanatory power!)
- Idea: using constraints as corrective feedback (provided by human expert)



28

- Learning is a trade-off between generalization and specialization
- Constraints restrict the number of solutions
 - \rightarrow help to reduce false positives!
- Hypotheses in a sub-sumption lattice
 ordered by generality





• Corrective feedback on explanations as an approach to identify noise

• Three types of explanations

- Inductively derived theory with all learned clauses (whole class)
- Individual clause from a theory (sub-groups within one class)
- Proof goals (why a particular example belongs to the target concept)
- If false negative examples are present, a hypothesis (or explanation) is too specific and must be generalized in order to cover more TP examples
- If false positive examples are present, a hypothesis (or explanation) is too general and must be specialized in order to be consistent with more TN examples

- Types of corrections applied in our prove of concept:
 - Restrict the **literals** in a clause
 - Restrict the **domain** of a variable
 - \rightarrow specialization

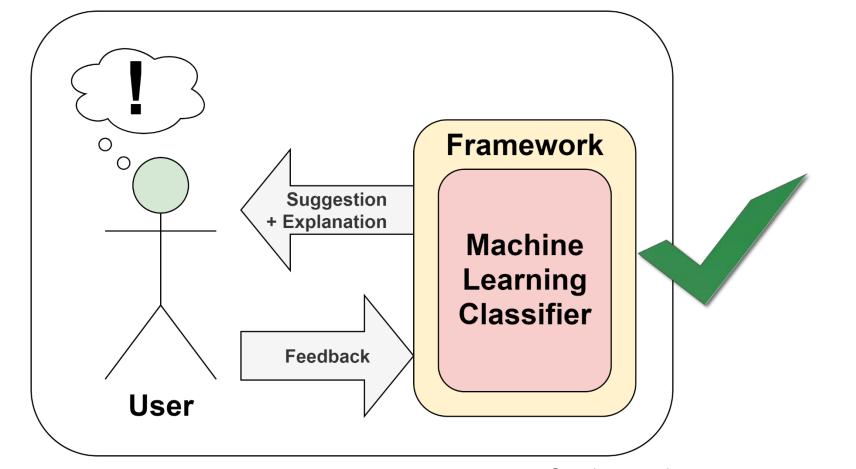
[theory]		[theory]	
[Rule 1] [Pos cover = 3 Neg cover = 0]		[Rule 1] [Pos cover = 3 Neg cover = 0]	
pT3(A) :-		pT3(A) :-	
<pre>contains_tissue(A,B), is_intestinumte</pre>	nue(B).	<pre>contains_tissue(A,B), is_tumor(B).</pre>	
[positive examples covered]		[positive examples covered]	
pT3(scan1).		pT3(scan1).	
pT3(scan2).	After constraining the	pT3(scan2). pT3(scan3).	
pT3(scan4).	theory		
[negative examples covered]		[negative examples covered]	
[Rule 2] [Pos cover = 1 Neg cover = 0]		[Rule 2] [Pos cover = 1 Neg cover = 0]	
pT3(scan3).		pT3(scan4).	
[positive examples covered] Noise?		[positive examples covered] Noise!	
pT3(scan3).		pT3(scan4).	
[negative examples covered]		[negative examples covered]	

32

	Clause-Level-Constraints	Literal-Level-Constraints		
(Finzel, 2019)	Gsys		TraMeExCo	Help
	Load Data	Evaluation/Constraints/F:		
	All positive examples	All negative examples	Positive examples (user)	Negative examples (user)
LearnWithME	pT3(scan1).	pT3(scan4).	pT3(scan2). pT3(scan3).	pT3(scan5). pT3(scan6).
			Write To File	Write To File
	Learn and Show Model			
	Aleph Output	Constraint Definition	Constraint History	
	[theory]	is_fat(B)	false :- hypothesis(pT3(A), (B0), _),	Depet
	[Rule 1] [Pos cover = 1 Neg cover = 0] pT3(scan2).	must not occur in explar :	in(B0,is_fat(B)). is_fat(B) must not occur in explanation	Reset

	Clause-Level-Constraints			
(Finzel, 2019)	Gsys		TraMeExCo	Help
	Load Theory	Produce Trace and Proof		
	Theory Learned by Aleph	Enter Example	Trace	Proof
LearnWithME	pT3(A) :- contains_tissue(A,B), is_tumor(B).	pT3(scan2)	pT3(scan2) Call:pT3(scan2) Call:contains_tissue(scan2 ,_12380) True Exit:contains_tissue(scan2	Exit:contains_tissue(scan2 ,region89) Call:is_tumor(region89) Exit:is_tumor(region89) Exit:pT3(scan2) true ;
	Enter Variable	Binary Constraint:		
	В	between ÷		
		Unary Constraint:	equal_name :	region89
	CogSys Companion - LearnWithME - version 09/2019		Adapted Theory	Covered Examples
		Apply and Show Theory	pT3(A) :- contains_tissue(A,B), is_tumor(B), is_equal_name(B,region89)	A = scan2 ;

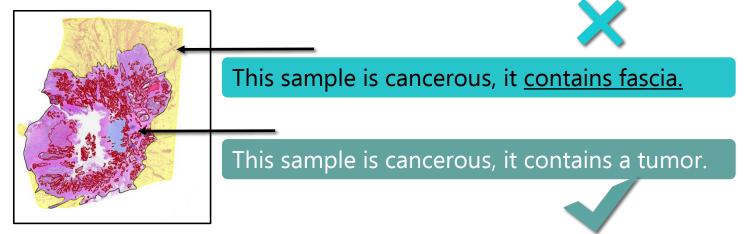
Correcting Classifier Decisions



© Mark Gromowski

Conclusion

- Goal: using ILP to fulfil comprehensibility & correctability of ML output in cancer diagnosis
- Approach: **mutual explanation** between medical expert & ML system
- Method: automated <u>learning of nearly verbal explanations & generation of constraints</u> from corrective feedback provided by an expert
 - Different types of explanations and constraints integrated in one explanation interface
- Findings: approach helps to identify & could explain noise in medical data (if tracing is appl.)



Future Work

- How to reduce computational time? \rightarrow Combine Aleph with RDFRules?
- Use a graph-based approach as intermediate method (instead of LIME and LRP) → Combine ILP with explanatory graphs?
- How to derive global constraints from user feedback?

Thank you for attending, i am looking forward to your questions and suggestions!

