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Explaining Classifier Decisions
TraMeExCo project
◦ Task: classify the stage of tumors in microscopy images to diagnose colon

cancer and make the decision transparent (what and why?)

◦ Data:
◦ scans of colon biopsy
◦ different tissues in one example scan
◦ spatial relationships
◦ contains, touches
◦ and more

◦ mislabeled examples (noise)
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Explaining Classifier Decisions
TraMeExCo project
◦ Task: classify the stage of tumors in microscopy images to diagnose colon cancer

and make the decision transparent (what and why?)

◦ Situation:
◦ Convolutional Neural Networks (CNNs) are popular for image classification due 

to high performance
◦ Demand for comprehensive, transparent and trust-worthy machine learning 

approaches rises
◦ A CNN's decision is not inherently transparent to humans
◦ Methods are needed to explain a deep neural network's decision
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Explaining Classifier Decisions
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Explaining Classifier Decisions
◦ Layer-wise Relevance Propagation (Bach et al., 2015)
◦ Local Interpretable Model-agnostic Explanations (Rebeiro et al., 2017)
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Explaining Classifier Decisions
Why Inductive Logic Programming?
◦ Comprehensible Classifier (Schmid et al. 2017 & Schmid 2018)

◦ LRP and LIME are limited in expressiveness: no relationships, only conjunction 
of visual features
◦ Concepts in the real world are often characterized by relational features!
 Relational Learning
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Explaining Classifier Decisions
Why Inductive Logic Programming?
◦ ILP can verbally express relations, with and without variables, negation and 

even recursionmore expressive explanations

◦ ILP can be combined with LIME and LRP (Rabold et al. 2018 & Finzel et al. 
2019) to approximate an explanation for a CNNs decision
◦ Extraction of spatial relationships between superpixels and aggregations of pixels with

similar relevance
◦ Learned an explanation of a target concept with ILP based on this input
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Inductive Logic Programming
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Inductive Logic Programming
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Inductive Logic Programming
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Aleph (A Learning Engine for Proposing Hypotheses)
◦ Framework that uses mode-directed inverse entailment (Srinivasan, 2006) to derive

theories from background knowledge and examples
◦ Five steps:
◦ Selection: select one initial example to be generalized, if no further examples, stop.
◦ Saturation: construct most specific clause from candidate literals taken from the background

knowledge in accordance to given language restrictions (modes)
◦ Reduction: find a clause more general than the bottom clause (search for subset with best score)
◦ Cover Removal: add clause with best score to the theory and remove all examples covered



Inductive Logic Programming
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Explaining Classifier Decisions
TraMeExCo project
◦ Task: classify the stage of tumors in microscopy images to diagnose colon

cancer and make the decision transparent (what and why?)

◦ Data:
◦ scans of colon biopsy
◦ different tissues in one example scan
◦ spatial relationships
◦ contains, touches
◦ and more

◦ mislabeled examples (noise)
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Correcting Classifier Decisions
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Improving the Joint Performance Through 
Cooperative Learning (Mutual Explanation)
◦ Explainability and comprehensibility  Can I trust the classifier? Does the 

system make the right decision? How did it derive its decision?
◦ Correctability I want to control the system and interactively give corrective

feedback in order to make the system decide differently
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Challenge: Noise
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◦ Two types: label noise and attribute noise
◦ Can affect accuracy, computational time to generalize from data, complexity

and interpretability of a classifier (reduced explanatory power!)
◦ Idea: using constraints as corrective feedback (provided by human expert)

constraint



Constraints as Corrective Feedback
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◦ Learning is a trade-off between generalization
and specialization

◦ Constraints restrict the number of solutions
 help to reduce false positives!
◦ Hypotheses in a sub-sumption lattice

ordered by generality



Constraints as Corrective Feedback
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◦ Corrective feedback on explanations as an approach to identify noise
◦ Three types of explanations
◦ Inductively derived theory with all learned clauses (whole class)
◦ Individual clause from a theory (sub-groups within one class)
◦ Proof goals (why a particular example belongs to the target concept)

◦ If false negative examples are present, a hypothesis (or explanation) is too
specific and must be generalized in order to cover more TP examples

◦ If false positive examples are present, a hypothesis (or explanation) is too
general and must be specialized in order to be consistent with more TN 
examples



Constraints as Corrective Feedback
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◦ Types of corrections applied in our prove of concept:
◦ Restrict the literals in a clause
◦ Restrict the domain of a variable
 specialization



Constraints as Corrective Feedback
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After constraining the 
theory

Noise!Noise?



(Finzel, 2019)
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(Finzel, 2019)
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Correcting Classifier Decisions
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Conclusion
• Goal: using ILP to fulfil comprehensibility & correctability of ML output in cancer diagnosis

• Approach: mutual explanation between medical expert & ML system

• Method: automated learning of nearly verbal explanations & generation of constraints from 
corrective feedback provided by an expert
• Different types of explanations and constraints integrated in one explanation interface

• Findings: approach helps to identify & could explain noise in medical data (if tracing is appl.)
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This sample is cancerous, it contains fascia.

This sample is cancerous, it contains a tumor.



Future Work
• How to reduce computational time?  Combine Aleph with RDFRules?

• Use a graph-based approach as intermediate method (instead of LIME and LRP)  Combine 
ILP with explanatory graphs?

• How to derive global constraints from user feedback?

Thank you for attending, i am looking forward to your questions and 
suggestions!
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