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Explaining Classifier Decisions TraMeExCo

TraMeExCo project

o Task: classify the stage of tumors in microscopy images to diagnose colon
cancer and make the decision transparent (what and why?)

o Data:
° scans of colon biopsy
o different tissues in one example scan
o spatial relationships
o contains, touches
° and more

> mislabeled examples (noise)
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Explaining Classifier Decisions IYaMeExCo

TraMeExCo project

o Task: classify the stage of tumors in microscopy images to diagnose colon cancer
and make the decision transparent (what and why?)

% Bundesministerium
fir Bildung

o Situation:

> Convolutional Neural Networks (CNNs) are popular for image classification due
to high performance

c Demand for comprehensive, transparent and trust-worthy machine learning
approaches rises

> A CNN's decision is not inherently transparent to humans
> Methods are needed to explain a deep neural network's decision

LEARNING EXPRESSIVE FIRST ORDER RULES, BETTINA FINZEL, VSE PRAGUE, 22.10.2019



und Forschung

Explaining Classifier Decisions eEnce

TraMeExCo project

o Task: classify the stage of tumors in microscopy images to diagnose colon cancer and
make the decision transparent (what and why?)

% Bundesministerium
fir Bildung

> Methods:
° For classification:
o Convolutional Neural Networks (Black-Box)
° Inductive Logic Programming (White-Box)
o For Explaining Classifier Decisions:

> Visual Explanation Methods: Layer-wise Relevance Propagation (LRP) and Local
Interpretable Model-agnostic Explanations (LIME)

> Verbal Explanation Method: Inductive Logic Programming (ILP)
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Convolutional Neural Networks
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Convolutional Neural Networks
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> Methods:
° For classification:
o Convolutional Neural Networks (Black-Box)
° Inductive Logic Programming (White-Box)
o For Explaining Classifier Decisions:
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> Layer-wise Relevance Propagation (Bach et al., 2015)

> Local Interpretable Model-agnostic Explanations (Rebeiro et al., 2017)

Explanation

Perturbed Examples
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Why Inductive Logic Programming?
> Comprehensible Classifier (Schmid et al. 2017 & Schmid 2018)

% Bundesministerium
fir Bildung

o LRP and LIME are limited in expressiveness: no relationships, only conjunction
of visual features

o Concepts in the real world are often characterized by relational features!
— Relational Learning a

Class X « to(B,A),to(B,C),to(C,A)
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Why Inductive Logic Programming?

o |LP can verbally express relations, with and without variables, negation and
even recursion = more expressive explanations

° |LP can be combined with LIME and LRP (Rabold et al. 2018 & Finzel et al.
2019) to approximate an explanation for a CNNs decision

o Extraction of spatial relationships between superpixels and aggregations of pixels with
similar relevance

o Learned an explanation of a target concept with ILP based on this input
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Inductive Logic Programming

Theory:
parent(A) :- child(B,A).

Backgr. Knowledge:

child(ian,debbie).
child(nate,debbie).
child(bethany,debbie).

-

child(ian,neal).
child(nate,neal).
child(bethany,neal).
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Inductive Logic Programming

Backgr. Knowledge:

Positive Examples (Target)
child(ian,debbie).
child(nate,debbie).
child(bethany,debbie).

parent(debbie).
parent(neal).

Theory:
parent(A) :- child(B,A).

-

child(ian,neal).
child(nate,neal).
child(bethany,neal).
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Inductive Logic Programming

(Given

— A set of observations represented in a language Ly consisting of:
+ a set of positive examples E'T
* a set of negative examples £~

— A background knowledge or domain theory BK (which corresponds to the knowl-

edge base)

— A hypothesis language Ly that specifies the clauses that are allowed in the hy-

potheses set H

— A covers relation covers(e, H, BK) which determines the classification of the ex-

ample e with respect to H and BK
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Inductive Logic Programming

Find a hypothesis i € Ly such that (given BK) h covers all and no negative examples

by fulfilling the following conditions:
—Ye€ ET:BK Uhe(his complete)

— VYee E~: BK Uh¥e (his consistent)

Aleph (A Learning Engine for Proposing Hypotheses)
> Framework that uses mode-directed inverse entailment (Srinivasan, 2006) to derive
theories from background knowledge and examples
° Five steps:
o Selection: select one initial example to be generalized, if no further examples, stop.

> Saturation: construct most specific clause from candidate literals taken from the background
knowledge in accordance to given language restrictions (modes)

> Reduction: find a clause more general than the bottom clause (search for subset with best score)
> Cover Removal: add clause with best score to the theory and remove all examples covered
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parent(debbie).
parent(neal).

Positive Examples

parent(ian).
parent(bethany).

Negative Examples

.- modeh(1, parent(+person)).

.- modeb(*, child(+person, -person)).
.- modeb(*, child(-person, +person)).

.- determination(parent/1, child/2).

- set(i, 3).

.- set(clauselength, 3).

.- set(minpos, 1).

.- set(minscore, 0).

.- set(verbosity, 2).

.- set(noise, 0).

.- set(nodes, 180000).

.- set(rulefile, Theory.txt').

.- set(record, true).

.- set(recordfile, 'Record.txt').

Modes and Settings

Backgr. Knowledge:

child(ian,debbie).
child(nate,debbie).

child(bethany,debbie).

child(ian,neal).
child(nate,neal).
child(bethany,neal).

Background

Knowledge

i = 1 (first layer of variables):

A = debbie

B =ian

C = nate

D = bethany
i = 2 (second layer of var.):
E = neal

i=3:

no further run
Bottom Clause:
parent(A) :-
child(B,A), child(C,A), child(D,A),
child(D,E), child(C,E), child(B,E).

Theory:
parent(A) :- child(B,A).

Variable Assignments and
Reduction

parent(A) »

parent(debbie)
A = debbie

child(debbie,B) »

child(B,debbie)
B =ian

C = nate

child(C,debbie)

. child(ian,E)
E = neal
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Explaining Classifier Decisions eEnce

TraMeExCo project

o Task: classify the stage of tumors in microscopy images to diagnose colon
cancer and make the decision transparent (what and why?)
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o Data:
° scans of colon biopsy
o different tissues in one example scan
o spatial relationships
o contains, touches
> and more a

> mislabeled examples (noise)
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Improving the Joint Performance Through
Cooperative Learning (Mutual Explanation)

> Explainability and comprehensibility = Can | trust the classifier? Does the
system make the right decision? How did it derive its decision?

> Correctability = | want to control the system and interactively give corrective
feedback in order to make the system decide differently

comprehend
comprehensible I |
classifier :
representation of m |_>
ILP D Explanation
Model m Interface explain
classification of e — 4—
new example e |==pi ocq ﬁ?o D —
0'\-/'0 _—
o510 —— D
O-C;j adapt | c—
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Challenge: Noise

> Two types: label noise and attribute noise

o Can affect accuracy, computational time to generalize from data, complexity
and interpretability of a classifier (reduced explanatory power!)

o |dea: using constraints as corrective feedback (provided by human expert)
comprehend

Explanation
Interface explain

classification of e — 4—
new example e D p—

e, _
—_— constraint
adapt
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Constraints as Corrective Feedback

o Learning is a trade-off between generalization

——————————————————————————

and specialization
o Constraints restrict the number of solutions

- help to reduce false positives!

o Hypotheses in a sub-sumption lattice ,
ordered by generality i =
parent(X,Y) A _|_+
hy 0 = ho / \ Generalization | +_}
‘v parent(X,X)  parent(X,Y) - child(Y,X) T —
hl 29 hz parent(debbie, X) v Specialization 3 —
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Constraints as Corrective Feedback

> Corrective feedback on explanations as an approach to identify noise
> Three types of explanations
° Inductively derived theory with all learned clauses (whole class)
° Individual clause from a theory (sub-groups within one class)
> Proof goals (why a particular example belongs to the target concept)

o If false negative examples are present, a hypothesis (or explanation) is too
specific and must be generalized in order to cover more TP examples

o If false positive examples are present, a hypothesis (or explanation) is too
general and must be specialized in order to be consistent with more TN
examples
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Constraints as Corrective Feedback

> Types of corrections applied in our prove of concept:

o Restrict the literals in a clause
o Restrict the domain of a variable
—> specialization
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Constraints as Corrective Feedback

[theory] [theory]

[Rule 1] [Pos cover = 3 Neg cover = O] Pos cover = 3 Neg cover = 0

pT3(A) :- pT3(4) :-

contains_tissue(A,B), is_intestinumtenue(B). contains_tissue(A,B), is_tumor(B).
[positive examples covered] [positive examples covered]
pT3(scanl). pT3(scanl).
pI3(scan2). After constraining the pT3(scan2).
pT3(scan4). pT3(scan3).

theory

[negative examples covered] [negative examples covered]

[Rule 2] [Pos cover = 1 Neg cover = 0] [Rule 2] [Pos cover = 1 Neg cover = 0]

[prsccans) ]

[positive examples covered] Noise? [positive examples covered] Noise!
pT3(scan3). pT3(scan4).

[negative examples covered] [negative examples covered]
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(Finzel, 2019)

LearnWithME

CogSys Companion - LearnWithME - version 09/2019

Clause-Level-Constraints Literal-Level-Constraints

( SYS

/ Help

TraMeExCo
Load Data ' Evaluation/Constraints/:|
AII positive examples  All negative examples Positive examples (user) Negative examples (user)

pT3(scanl). pT3(scan4). pT3(scan2). pT3(scanb).

pT3(scan3). pT3(scanb).

Write To File i Write To File
'Learn and Show Model
Aleph Output Constraint Definition Constraint History

false :-

[theory] | hypothesis(pT3(A),
is_fat(B) (BO), ),

[Rule 1] [Pos cover = 1 in(BO.is_fat(B)). Reset
Neg cover = (] ] is_fat(B) must not ]
pT3(scan2). - \must not occur in explar:| occur in explanation
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LearnWithME

CogSys Companion - LearnWithME - version 09/2019

Clause-Level-Constraints Literal-Level-Constraints

( SYS

/ Help

Apply and Show Theory

TraMeExCo
Load Theory ' Produce Trace and Proof |
Theory Learned by Aleph Enter Example Trace Proof
PT3(A) :- pT3(scan2) pT3(scan2) | Exit:contains_tissue(scan2
contains_tissue(A,B), Call:pT3(scan2) ,region89)
is_tumor(B). Call:contains_tissue(scan2| Call:is_tumor(region89) _
,_12380) Exitis_tumor(region89) ||
True Exit:pT3(scan2)
Exit:contains_tissue(scan2 . true
Enter Variable Binary Constraint:
B | between | |
Unary Constraint: ‘equal_name - region89
CogSys Companion - LearnWithME - version 09/2019 AdaptEd Theory CoverEd Examples
pPT3(A) :- A=scan2 ;
contains_tissue(A,B),
is_tumor(B),

“is_equal_name(B,region89)

EXPLANATION-GUIDED CONSTRAINT GENERATION, BETTINA FINZEL, COLLOQUIUM, 16.10.2019




Correcting Classifier Decisions

T
L

\

4 Framework\
/
Suggestion \
Explanation .
Machine
Learning
Classifier
Feedback
N /

\\\‘ User

—

© Mark Gromowski

LEARNING EXPRESSIVE FIRST ORDER RULES, BETTINA FINZEL, VSE PRAGUE, 22.10.2019



Conclusion

* Goal: using ILP to fulfil comprehensibility & correctability of ML output in cancer diagnosis

* Approach: mutual explanation between medical expert & ML system

* Method: automated learning of nearly verbal explanations & generation of constraints from
corrective feedback provided by an expert

* Different types of explanations and constraints integrated in one explanation interface

* Findings: approach helps to identify & could explain noise in medical data (if tracing is appl.)

This sample is cancerous, it contains a tumor.
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Future Work

* How to reduce computational time? - Combine Aleph with RDFRules?

* Use a graph-based approach as intermediate method (instead of LIME and LRP) = Combine
ILP with explanatory graphs?

* How to derive global constraints from user feedback?

Thank you for attending, i am looking forward to your questions and
suggestions!
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