
From
Ontologies to
Knowledge

Graphs

The Evolution of the Semantic Web
towards Explainable AI and Retrieval

Augmented Generation (RAG)

Ana Mª Fermoso García

Computer Sciences Faculty. Pontificia University of Salamanca (UPSA)

• SEMANTIC WEB AND ONTOLOGIES

• EVOLUTION TOWARDS KNOWLEDGE GRAPHS (KG)

• RAG AND THE ROLE OF KGS IN EXPLAINABLE AI

• PRACTICAL APPLICATIOBN. USE CASE ARCHIVE OF “ACCIÓN CATÓLICA

ESPAÑOLA” (ACE)

Content

Fundamentals and state of the art

SEMANTIC WEB
AND

ONTOLOGIES

• Introduction to Semantic Web

• Ontologies

• RDF

• OWL

• SPARQL

Content

Semantic Web
Introduction

• Evolution of the traditional web proposed by Tim Berners-Lee in the 2000s.

• Objectives

• Data on the web is not only readable by humans, but also understandable by machines, allowing
automatic reasoning, interoperability and semantic retrieval.

• It seeks to represent knowledge through structured and meaningful metadata.

“The Semantic Web is not a separate Web but an extension of the current one, in which information is
given well-defined meaning”

Berners-Lee, Hendler, & Lassila (2001), Scientific American.

Origin and visión of Semantic Web

• The Current Web links documents; The Semantic Web links data.

• Current Web

• Increasing size => Problem efficient searches

• Understandable by people but not by machines

• Semantic Web

• W3C late 90s

• Machine Understandable Web content

• Automation of tasks

• More efficient search results

• Facilitates location, sharing and integration of information and services to get more out of Web
resources

• Classifies, structures and describes Web resources for processing in software applications

• Graph or hierarchical structure: network of nodes typified by classes and relationships

• Nodes=Web resources; each resource associated with a type or meaning; Arcs=relationship between
nodes or concepts

Current Web vs Semantic Web

• ONTOLOGIES

• Languages

• RDF

• Matadata and ontology definition

• Based on XML

• Triple chaining (node=subject // objet, arc=predicate)

• RDFSchema: class hierarchy

• OWL

• RDF →DAML+OIL → OWL

• RDF + classes through conditions, instances ennumeration, properties characteristics (cardinality, transitivity)

• SPARQL

• Ontology Query Language

• Tools for ontologies creation

• Protege

WEB SEMANTIC TECHNOLOGIES

Ontologies

• Some definitions...

• Formal specification of a shared conceptualisation. Gruber (1993)

• Common vocabulary for people who need to share information from a particular domain

• Way to represent web knowledge in a machine-readable and reusable

• Hierarchy of concepts with attributes and relationships to define semantic networks and
interrelated information units.

ONTOLOGIES

• Components for representing knowledge...

• Concepts or classes: basic ideas (also subclasses)

• Relations: links between concepts

• Properties: attributes of the classes

• Instances: concrete objects of a concept

• Advantages

• Knowledge reusing

• Provides common understanding or knowledge between people, researchers or software agents

• Separates knowledge domain from its management

• Analysis of knowledge domain in terms of its concepts

Components and advantages of Ontologies

• FOAF (Friend Of A Friend) : Semantic social network

• Persons descrition with their activities and relations with other people and objects

• Concepts: person, name, fullname, mbox, knows, …

• Prefix: http://xmlns.com/foaf/0.1/

• vCard

• Exchange of personal data. Personal card and contacts,. Using in email.

• Concepts: name, email, work, title, tel. …

• Prefix : http://www.w3.org/2006/vcard/ns#

• SKOS (Simple Knowledge Organization System)

• Model for representing the basic structure and content of conceptual schemes such as lists of subject headings, taxonomies, classification schemes, thesauri, ...

• Concepts: prefLabel, altLabel, narrower, broader, closeMatch, inSchema, …

• Prefijo: http://www.w3.org/2004/02/skos/core#

• Dublin Core (DC)

• Standard for describing information resources and facilitating their retrieval. It started as a cataloguing format for libraries, but has now spread to other fields

• Concepts: title, creator, subject, description, publisher, contributor, date, type, format, identifier, source, language, relation, coveraghe, rights

• Prefix : http://purl.org/dc/elements/1.1/

• Geonames

• Geographic database in semantoic format

• Concepts: lat, long, …

• Prefix : http://www.w3.org/2003/01/geo/wgs84_pos#

• CIDOC-CRM:

• Cukltiral heritage description

• Concepts: person, group, plave, event, activity, documernt…

• https://cidoc-crm.org/

Ontologies and Reference vocabularies

http://www.w3.org/2003/01/geo/wgs84_pos

Example of ontology

1. Domain and scope of the ontology

• What will it be used for, what questions will it answer, who will use it,...

2. Investigate reuse of ontologies

• Libraries: Ontolingua, Swoogle/// Biomedical ontologies: OLS (https://www.ebi.ac.uk/ols/index), BRENDA

• WebVOWL(http://www.visualdataweb.de/webvowl/): Ontology visualisation tool

3. Terms + important ontologies

4. Classes and hierarchical organization

• Bottom-up and/or top-down approach

• Hierarchy = ‘is a’

• Consistent nomenclature

• Identify synonymous classes, sibling, disjoint, multiple inheritance,...

• Ontology scope

• Class, property or instance - depends on context

5. Class properties

• Intrinsic, extrinsic, parts of a structured object or relations with other individuals

6. Characteristics or facets of properties

• Data typeAllowed and/or default values

• Domain or range of values

• Cardinality

• Inverse properties

7. Creation of instances

• Assigning values to properties

Metodology for Ontology Definition

• Key areas:

• Semantic interoperability: different systems share a common vocabulary (e.g. libraries, museums,
archives).

• Heterogeneous data integration: facilitating federated queries and source reconciliation.

• Automatic reasoning: logical inferences on existing data.

• Domain modelling: precise structuring of knowledge in areas such as medicine, industry, culture
or science.

• Examples:

• Europeana and its use of EDM (Europeana Data Model), derived from RDF and OWL.

• DBpedia: extracts structured knowledge from Wikipedia.

• Linked Open Data Cloud: interconnected set of RDF datasets.

Applications and use cases of ontologies

The Linked Open Data Cloud

RDF

Resource Description Framework

• Definition

• Infrastructure or mechanism used for the description of Web resources, but not restricted
to any particular application or knowledge domain.

• Facilitates information exchange and interoperability between applications by enabling
automated processing of Web resources

• Features

• XML-based syntax (RDF provides the model and XML provides the syntax to describe it)

• RDF Triples: Each RDF statement/sentence consists of a subject (the resource), a predicate
(the property or relationship) and an object (the related value or resource).

• Unique identifiers: Uses URIs to uniquely identify each resource

• Application areas: search engines, agents, information cataloguing, exchange and
interoperability between applications, ...

What is RDF (Resource Description Language)

18

• Data model with three types of objects:

• RESOURCES

• Descriptions of RDF sentences.

• URI identification

• A resource can be a web page, a part of a web page, an element of a page, a collection of pages, ...

• PROPERTY

• Feature (attribute or relation) of a resource

• Associated to: allowed values, other properties, resources that describes, ...

• SENTENCES OR “TRIPLES”

• A resource consists of three elements: subject, predicate and object

• Subject: to whom the sentence refers / Object: to whom it is linked / Predicate: through whom it is
linked.

• Subjects and objects can be resources (URI) or literals. Predicates are always resources.

• Literal: string, XML-tagged data or XML primitive type.

RDF MODEL

19

20

◼ Graphical Representation of a Triple or Sentence :

• Three types:

• Fundamentals (:rdf)

• To represent the objects of the RDF data model

• RDF Schema (:rdfs)

• To create some resources from others => To define new vocabularies or rules to derive new resources

• To define the context in which a resource is to be used

• Utility

RDF CONCEPTS

21

• rdf:Resource

• To describe resources. Its interpretation depend on context

• rdf:Property

• Resource properties. They are also resources (a property may contain, among others, an attribute
rdf:type, rdf:datatype=‘&xsd;tipoXML’, or none at all when its value is a literal or string)

• Predicate statements

• rdf:Statement

• Resource to define a triple.

• Three parts: rdf:subject, rdf:object, and rdf:predicate.

Fundamentals Concepts

22

• rdfs:subPropertyOf

• Property indicating a relationship between resources (predicate)

• If A is a subProperty of B, any triple that has subProperty A, will also have B (e.g. ‘mother’ subPropertyOf ‘parents’).

• rdfs:Class, rdf:type, rdfs:subClassOf

• Class: resource that defines a set of resources. ‘mother’ subPropertyOf ‘parents’) rdfs:Class, rdf:type, rdfs:subClassOfClass: resource
defining a set of resources

• rdf:type:

• Every resource has an rdf:type property indicating the class (rdfs:Class) to which it belongs

• Every property has an rdf:type property indicating the property (rdf:Property) to which it belongs.

• With rdfs:subClassOf and rdfs:subPropertyOf you define hierarchies of classes and properties.
• All classes inherit (have as value of "subClassOf) from rdf:Resource

• rdfs:domain, rdfs:range

• Property characteristics. Their value must be a class.

• Domain: resources that can be assigned to a given property

• Range: set of valid values that a property can take

• A property can have several domains, but only one range value

Concepts of RDF Schema

23

• XML language used to define metadata with the RDF model

• Formats: Serialized or abbreviated

• Descriptions

• An RDF document is a set of descriptions

• With the rdf:Description elements we define and/or use already defined resources

• Each description

• An ID attribute (definition) or about (already existing ref.)

• Formed by a set of properties

• Each property: resource (resource attribute) , literal or other description

• If the property takes a specific value within a context: rdf:value -> <property rdf:value=‘context_value’>

RDF SINTAX

24

RDF ::= ['<rdf:RDF>'] description* ['</rdf:RDF>']

Description::= '<rdf:Description' idAboutAttr? '>' propertyElt* '</rdf:Description>'

idAboutAttr::= idAttr | aboutAttr

aboutAttr ::= 'about="' URI-reference '"'

idAttr ::= 'ID="' IDsymbol '"'

propertyElt ::= '<' propName '>' value '</' propName'>'

| '<' propName resourceAttr '/>'

| ‘<' propName rdf:datatype=“&xsd;tipo”>val</propName '/>'

propName ::= Qname

value ::= description | string

resourceAttr ::= 'resource="' URI-reference '"'

Serialized sintax RDF

25

RDF formats and examples

Subject: :AdaLovelace

Predicate: dc:creator

Objet: :NotasMaquinaAnalitica

OWL

Ontology Web Language

• Definition:

• Allows to represent the meaning of the terms of a vocabulary about a specific area of knowledge and the relationships
between these terms.

• It allows to represent formalized and logical knowledge.

• It defines classes, properties and relations between concepts. This representation of terms and relations between them is
what we call ontology.

• Characteristics:

• Definition of classes, properties and relations: Allows to specify classes, properties, relations and restrictions between
them.

• Automatic reasoning: Facilitates the inference of new information from existing data.

• Base languages OWL (derived from RDF)

• XML (syntax) -> XML Schema (doc.XML structure) + RDF (data model) + RDF Schema (classes, properties, hierarchy) ->
OWL (+ vocabulary for classes and properties: cardinality, equality, relations,...)

Header document Ontology
<rdf:RDF

xmlns:owl ="http://www.w3.org/2002/07/owl#"

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd ="http://www.w3.org/2001/XMLSchema#">

What is OWL (Ontology Web Language)

2

8

What is OWL?

• A Person is a class, and hasChild is a property whose domain is Person and range is also Person

• A person can have children

• Alice is a person / Bob is a person / Alice hasChild Bob

Example and syntax of OWL

SPARQL

Semantic Query Language

• Query language for RDF and OWL

• Enables complex queries over RDF graphs, extracting information based on triple patterns.

• Includes functionality for filtering results, sorting, limiting and aggregation.

• Quite similar to SQL

What is SPARQL

32

• SELECTS

• Selection on data query

• CONSTRUCT

• Construction of RDF triples

• ASK

• Questioning the dataset and answering with ‘Yes’ or ‘No’

• DESCRIBE

• Description of a resource (e.g. we can know its properties)

Query formats

33

• SELECT structure

SELECT ?var1 ?var2 ..

WHERE {

condition1 .

condition2 .

… }

• Examples of conditions
• With literal: “data”
SELECT ?x
WHERE {

?x foaf:name “Ana Fermoso”
}
• With number:
SELECT ?x
WHERE {

?x ?y 30
}
• With literal in a language: “data”@es
SELECT ?x
WHERE {

?x foaf:name “Ana”@es

}

SELECT

34

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:admin="http://webns.net/mvcb/">

<foaf:Person rdf:ID="me">
<foaf:name>Ana Fermoso</foaf:name>
<foaf:givenname>Ana</foaf:givenname>
<foaf:family_name>Fermoso</foaf:family_name>
<foaf:nick>AFG</foaf:nick>
<foaf:mbox>afermosoga@upsa.es</foaf:mbox>
<foaf:homepage rdf:resource="http://afermoso.es"/>
<foaf:phone rdf:resource="tel:123456789"/>
<foaf:workplaceHomepage rdf:resource="http://www.upsa.es"/>
<foaf:workInfoHomepage rdf:resource="Catedrática universidad"/>
<foaf:knows>

<foaf:Person>
<foaf:name>Nuria</foaf:name>

<foaf:mbox>nn@gmail.com</foaf:mbox></foaf:Person></foaf:knows>
<foaf:knows>

<foaf:Person>
<foaf:name>Pedro</foaf:name>

<foaf:mbox>pp@hotmail.com</foaf:mbox>

<rdfs:seeAlso
rdf:resource="http://www.pp.es"/></foaf:Person>

</foaf:knows>

</foaf:Person>

</rdf:RDF>

Evolution and convergence

From
ONTOLOGIES to

KNOWLEDGE
GRAPHS (KG)

• Evolution from semantic web to KG

• Ontologies vs KG

• Examples & comparative

Content

The Semantic Web, proposed by
Tim Berners-Lee, sought to give

the web machine-understandable
meaning through the use of

ontologies and technologies such
as RDF and OWL.

With the exponential growth of
data and the need for more

dynamic applications, knowledge
networks emerged.

Knowledge Graphs (KGs):
pragmatic evolution that
combines the formality of

ontologies with the flexibility of
graphs.

From Semantic Web to Knowledge Graph (KG)

• Characteristics:

• Formality: Based on descriptive logics, they allow inferences and automatic reasoning.

• Standards: Use languages such as OWL and RDF.

• Applications: Interoperability, data integration and knowledge modelling (Wikidata)

• Limitations:

• Rigidity: Difficult to adapt to rapid changes in data.

• Learning curve: Require specialized knowledge for creation and maintenance.

• Scalability: Can be complex to scale in environments with large volumes of data.

Ontologies. Characteristics and limitations

• Definition

• A knowledge graph is a data structure that represents entities and their relationships in the form
of nodes and edges, integrating data from various sources and allowing efficient inferences and
queries.

• Advantages

• Flexibility: Easy integration of new data and relationships.

• Scalability: Suitable for large volumes of heterogeneous data.

• Interoperability: Facilitates connection between different domains and systems.

• Applications: Search engines (Google Knowledge Graph), virtual assistants, recommendation
systems,...

KG. Definition and advantages

Ontologies vs Knowledge graphs

• Convergence: Ontologies as the basis for knowledge graphs

• Knowledge graphs offer more flexibility but ontologies provide them with the necessary semantic structure
and are sometimes used to define entities and relationships.

Characteristic Ontologies Knowledge Graphs

Purpose To formally and logically represent a domain To integrate, link, and contextualize real-world data

Level of Formalism High (based on descriptive logic: OWL, DL) Variable (can range from informal to OWL-compatible)

Components Classes, properties, axioms, restrictions Entities, relationships, attributes (often RDF or JSON-LD)

Orientation Domain modeling, semantic interoperability Practical application, retrieval, data navigation

Maintenance Requires experts Can be partially automated

Reasoning Explicit, logic-based (formal inferences) Implicit or explicit; does not always require formal logic

Examples CIDOC-CRM, FOAF, Dublin Core Google KG, Wikidata, DBpedia, Facebook KG

Example and comparison

• Ontology (OWL/RDF)

• Firstly it has been defined: “Person”, “Book” and
“authorOf” relation

“Miguel de Cervantes writes the Quijote”

• Knowledge Graph (JSON-LD o RDF)

• No axioms or formal logical inferences, but structured
representation to link data, integrate it and answer
questions like "Who is the author of Don Quijote? –

• Ideal for RAG and intelligent search!

KG and XAI (Explainable AI)

RAG &
Knowledge

Graphs (KG)

• KG & IA

• KG Introduction

• RAG Technogies. Vectors vs. KG

• KGs

Content

Knowledge Graph
(KG) & AI

Explainable AI (XAI)

•Language models (LLMs) are very good at generating text, but they lack structured, up-to-date or verifiable knowledge.

•KGs allow the addition of explicit context, semantic relations and disambiguation, something that vectors alone cannot
guarantee.

AI & structured data

•Although formal logic is not always used, KGs allow for relationship navigation and graph-based inference (traversal,
similarity, clustering).

Knowledge and
inference

•KGs make the path of knowledge visible (e.g., Cervantes → author of → Don Quixote), while a text model
functions as a ‘black box’.

•This makes them key in environments where traceability is required, such as heritage, health, justice or education.
Explainability of AI (XAI)

•RAG combines text generation with external information retrieval. KGs enrich this process:

•They are used as a structured source.

• They guide retrieval with semantic context.

• They allow enriching answers with metadata or useful connections.

RAG (Retrieval-
Augmented Generation)

•It is possible to build KGs from NLP-processed texts (NER, relations), and then use them as the system's
‘semantic memory’.Integration with NLP

KG & IA. Importance of KG in IA

• Explainable AI (XAI): processes and methods that allow humans to understand and trust the
results of LLMs (not see them as a black box)

• RAG: Combines generative (LLMs) and retrieval (from authoritative sources) models
generating more relevant and accurate answers.

• Knowledge Graphs in RAG for Explainable AI (KG-RAG)

• Knowledge graphs guide the retrieval and organization of relevant pieces of information, which
are then used to generate more accurate and explainable answers

• Advantages:

• Structured context: KGs provide explicit relationships between entities, allowing more coherent and
grounded answers to be generated.

• Multi-hop reasoning: They facilitate the tracking of multiple inference steps, improving the system's
ability to answer complex questions.

• Traceability: Each element of the answer can be linked to specific nodes and relationships in the KG,
improving transparency and user confidence.

Use of RAG for Explainable AI (XAI)

• Google Knowledge Graph

• Enhances search with structured information panels.

• Displays entities, relationships, dates and context.

• Wikidata

• Multilingual collaborative database.

• Supports Wikipedia, virtual assistants and semantic visualisation.

• Dbpedia

• Extracts structured knowledge from Wikipedia.

• Pioneer of Linked Open Data.

Some real applications with KG

• Health sector

• Relationship between diseases, treatments, patients (e.g. Mayo Clinic, Roche).

• E-commerce

• More precise recommendations on Amazon and Alibaba, based on semantic relationships.

• Cultural heritage

• Modelling with CIDOC-CRM in museums, libraries and archives (Europeana, British Museum).

• Artificial Intelligence (AI)

• KGs integrated in RAG enrich answers generated by models such as GPT, providing traceability
and context.

Some real applications with KG

RAG Introduction

Introducción RAG

• RAG: Mechanism to optimise the output of an LLM (Large Language Model) to ensure that
they generate their information in response to specific and updated external data in order to
obtain relevant, accurate and contextually appropriate results.

• RECOVERY & GENERATION:

• LLM for text generation + Information retrieval from authoritative (databases, documents,
structured systems, ...) and up-to-date knowledge sources == More appropriate and useful
answers

What is the Retrieval Augmented Generation (RAG)

• When and why use RAG

• When up-to-date or specialized information is needed.

• In sensitive domains (legal, health, heritage) where accuracy is key.

• To improve model robustness and explainability.

• To reduce hallucinations in LLMs.

RAG process and when can be used

Introducción RAG

• LLMs hallucinations

• Static and outdated data sources

• Generic information not contextualized

• Inaccurate answers and/or from non-authoritative sources

• RAG advantages

• Dynamic updating of information ensuring to provide recent and valid information

• Accuracy in specific answers even with references => greater confidence and reliability for users

• Smaller models by delegating knowledge to authoritative bases => cost savings by training the model

• More control for developers => control over information sources to adapt to changing requirements and generate
appropriate answers

• With and Without RAG

• Leverages up-to-date data and generates useful, targeted responses.

• LLM without RAG: Limited to pre-trained knowledge, providing generic or inadequate answers.

RAG vs LLM (i)

Introducción RAG

• Example: Answer genereation for technical support depatment

• Without RAG (only LLM):

• A company has a trained LLM until 2022. A customer asks: "What steps do I need to take to configure product X with the latest software update released this month?“

• The LLM replies, "I have no information on the latest update. Please refer to the documentation.“

• Scenario with RAG:

• The same company implements RAG, connecting the LLM to a vector database that indexes updated technical documentation, software bulletins and internal FAQs.
The customer asks the same question: "What steps do I need to take to configure product X with the latest software update released this month?“

• The RAG system consults the base and replies:*:

"To configure Product X with the latest software update (version 5.2.1 released in November 2024), follow these steps:

• Download the firmware from the link: [updated link].Connect the device to your PC using the USB cable.

• Run the configuration tool and select “Update”.
For more details, see the guide here: [link to documentation].“

• Example: assisting students in a university course

• Non-RAG scenario (LLM only):

• A student asks, "What are the deadlines for turning in projects in the Artificial Intelligence course this semester?“

• The LLM responds: "Sorry, I don't have specific information about your course deadlines. Please check with your instructor or check the student portal".

• Scenario with RAG:

• The same system implements RAG, connected to the university's learning management system (LMS), which contains deadlines, course content and teacher updates.
The student asks the same question, "What are the deadlines for submitting projects in the Artificial Intelligence course this semester?"

• The RAG system queries the LMS and responds:
*"The deadlines for projects in the Artificial Intelligence course are as follows: Project 1: 30 November 2024 / Project 2: 15 December 2024. Make sure you upload your submissions to the portal before 11:59
PM. For more details, see the link: [link to LMS]. "

RAG vs LLM (ii)

Introducción RAG

1. Definition USE CASES

• Objective: problem to be solved and answers to be provided

• End-users: profile and expectations

E.g.: different citizens' profile questions on tax declaration issues based on manuals, legislations,...

2. Selection and Updating EXTERNAL DATA SOURCES

• Give where to retrieve the information based on context or use cases and ensure its permanent
updating

• Possible sources: documents (PDF, manuals, presentations,...); databases (relational or non-
relational); structured data (knowledge graphs, APIs); others (reference and trusted websites)

• Ensure data is updated, organized and accessible

E. g.: Tax office chatbot for tax return help: PDFs legislation, BOEs, manuals, FAQs, official website of the tax office...

How RAG works. Steps to create a RAG system (i)

Introducción RAG

3. INDEXATION of data

• From external sources to formats to facilitate retrieval and search:

• Vector databases: generation of embedding from data sources using pre-trained models

• Knowledge graphs: modelling relationships between key concepts and data => define entities,
relationships and rules for logical and inferential queries

4. RETRIEVAL mechanism of relevant information

• Translation of user questions (prompt) to queries on knowledge bases

• By semantic similarity (vector bases)

• Semantic queries (SPARQL) in graphs
Ex: Deadline for filing income tax return?

Vector: returns FAQ documents, regulations or manuals

Graphs: relation ‘procedures and dates’.

How RAG works. Steps to create a RAG system (ii)

Introducción RAG

5. CONNECT and ENHANCE generative LLM data model=> increase user input (prompts) by
adding context relevant retrieved data

• Integrate retrieval system into generative model:

• Query ->Retrieve->LLM input->Generate response

• Adjust/enrich model prompt

• E.g. prompt: "based on the following information XX, answer question YY”

6. EVALUATION and ADJUSTMENT of the system

• Quality metrics:

• Recall (% relevant information retrieved) / Accuracy (% correct information retrieved) / Accuracy (how correct and
useful are the answers)

• Adjustments

• Search engine optimization for retrieval

• Refine LLM prompts

How RAG works. Steps to create a RAG system (iii)

Introducción RAG

How RAG works. Steps to create a RAG system

Source: https://aws.amazon.com/es/what-is/retrieval-augmented-generation/

https://aws.amazon.com/es/what-is/retrieval-augmented-generation/

Tecnologías para RAG

1. Load documents that form the knowledge database

• Langchain library allows to load documents (loaders) from different sources (PDF, web, ...).)

2. Split loaded documents into text fragments

• Langchain Splitters

3. Index (embedding) or convert text fragments (to vector or graph) for storage in DB

• In Vector DB (for example Chroma) or

• In Knowledge Graph DB (for example Neo4j)

4. Retrieval of information based on user prompt and fluent response generation

• Conversion of queries (prompt) from natural language to DB graph query language (from NLP
to Cyber or SPARQL with Langchain and selected LLM, OpenIA, for example)

RAG by programming

Introducción RAG

• Advantages of RAG with Chatbots

• Updated answers

• Ex: answers to company administrative policies, product availability, recent events...

• Improved user experience: More useful interactions, relevant content adapted to context and
profile, reduced hallucinations,...

• Ex: Detailed instructions for filing tax returns

• Improved user experiences

• Some examples of use:

• Customer support (access to FAQs and doc. Updated)

• Medical assistance (drug databases and trusted protocols: e.g. side effects of drug x?)

• E-commerce (e.g. product availability or status of a specific order XXX)

• Personalized education (e.g. advanced level exercises to practice physics topic X)

• Legal chatbot (e.g. Clarify clause x of rental contract)

RAG & Chatbots

RAG Technologies

Vector Databases

vs

Knowledge Graphs

RAG Technologies

• VECTOR DATABASES

• Fast searches in large volumes of unstructured text (document searches)

• KNOWLEDGE GRAFTS (KG)

• Relationships between data critical to answers (legal queries (laws and cases))

Tecnologías RAG

RAG Technologies

• Definition:

• Store and retrieve vectors (embeddings). Vector: mathematical representation of text or image that encodes semantic
meaning, facilitating semantic search.

• Functioning

• Generation of embeddings or vectors (conversion of text into vectors) -> Storage in vector databases -> Query for nearest
and most relevant vectors

• Advantages and disadvantages

• ☺ Speed search in large volumes of data/documents and ease of integration (e.g. LangChain Framework)

• Dependency on embeddings generation model, limitation for complex relationships, only finds semantically similar
documents

• Examples:

• FAQs (business, care etc.)

• Medical care based on scientific articles

• E-commerce with personalized recommendations

• Example technologies: BD FAISS, Pinecone or Weaviate

VECTOR DATABASES

RAG Technologies

• Definition:

• Allows modelling complex data and making logical inferences based on organisation in graphs: set of entities (nodes) and
their relationships (edges).

• Operation

• Graph construction (from data to graphs (concepts (nodes) and relationships (edges)) -> Prompts conversion to structured
queries (SPARQL or Cyber) -> Response generation

• Advantages and disadvantages

• ☺ Logical reasoning (inferred) and complex; explainability by showing relationships between data to support response;
ideal for highly interrelated domains

• Higher initial complexity for modelling relationships and in large graphs that can slow down queries. Lack of
standardization and challenges specific to each domain (terminology, ontologies,...)

• Examples:

• Legal analysis (relations laws, contracts, precedents...)

• Personalised education Finance (risks, markets, assets...)

• Example TECHNOLOGIES: Neo4j (Cyber), GraphDB (RDF and SPARQL)

KNOWLEDGE GRAPH (KG)

RAG Technologies

Vector Databases vs Knowledge Graphs (i)

Source: https://www.datacamp.com/es/tutorial/knowledge-graph-rag

Characteristic Knowledge Graphs Vector Databases

Data Representation
Entities (nodes) and relationships (edges) between entities,

forming a graph structure.

High-dimensional vectors, each representing a data point (e.g., document

or sentence).

Retrieval Mechanisms
Traverse the graph structure and follow relationships between

entities. Enables inference and derivation of new knowledge.

Vector similarity based on a similarity parameter (e.g., cosine similarity).

Returns the most similar vectors and the associated information.

Interpretability

Knowledge representation interpretable by humans. The graph

structure and labeled relationships clarify the connections between

entities.

Less interpretable for humans due to high-dimensional numeric

representations. Hard to understand the relationships or reasoning behind

retrieved data.

Knowledge Integration

Facilitates integration by representing entities and relationships in

a unified graph structure. Perfect integration if entities and

relations are correctly assigned.

More difficult. Requires techniques like vector space alignment or set-

based methods to combine information. Ensuring vector compatibility can

be non-trivial.

Inferential Reasoning

Enables inferential reasoning by traversing the graph and

leveraging relationships between entities. Discovers implicit

connections and derives new information.

More limited. Depends on vector similarity and may overlook implicit

relationships or inferences. Can identify similar information but not

complex graph relationships.

https://www.datacamp.com/es/tutorial/knowledge-graph-rag

Vector Databases vs Knowledge Graphs(ii)

RAG Technologies

• RAG limitations if only vectors (embeddings)
• Loss of semantic structure: explicit relationships between

entities are not preserved.

• Difficulty in navigating complex relationships (e.g., multihop
reasoning).

• Poor transparency: we do not know why a chunk was retrieved
(opacity).

• Sensitivity to malformed context: if an entity is ambiguously
named, the vector has no way to disambiguate.

• No explicit reasoning: logical paths between concepts cannot be
inferred or explained

• Example:
• Query: “What is the relationship between Miguel de Cervantes and the

battle of Lepanto? ”

• A RAG system with only vectors can retrieve text where both words appear,
but without knowing that Cervantes participated as a soldier, nor why this
is relevant to the question.

• Why the introduction of KG in RAG
• Semantic context:

• Cervantes → participated in → Battle of Lepanto
relationships are represented, which better guides
retrieval.

• They allow disambiguation of entities (“Amazon”
company or river?).

• Traceability:

• Each KG node and relation is referenced, so the system
can explain:

• “This information comes from node X which is
connected to Y via property Z”.

• Explainability:

• The user can see or audit the logic behind the answer.

• The reasoning can be navigated

Use of Knowledge
Graphs

(KG)

Future of RAG

Knowledge Graph

Representation

Source: https://www.datacamp.com/es/tutorial/knowledge-graph-rag

https://www.datacamp.com/es/tutorial/knowledge-graph-rag

Knowledge Graph

1. Conceptual model

• Ejemplo:

• Nodes:

• Person: "Juan", "María"

• Enterprise: "Empresa X", "Empresa Y"

• City: "Madrid", "Barcelona"

• Links:

• “live in (vive en)", “work in (trabaja en)", “situated in (situada en)“

• Ex KG = María works (trabaja en) Empresa X and lives in (vive en) Madrid

2. Steps for KG creation

1. Domain definition

2. Entity identification. Nodes creation.

3. Relations definition

4. Transform to structured format with IA-KG tools and technology selection (Ex.: KG creation with Cyber language n Neo4j or with SPARQL in
GrapfDB)

5. Query the KG

KG Use. Steps (i)

Knowledge Graph

3. Steps to leverage the Knowledge Graph for RAG

1. Convert question to structured query (use NLP to translate prompt to SPARRQL or Cyber)

2. Query Graph (query execution)

3. Generate answer (combine structured result with generative model to get smooth answer)

KG Use. Steps (ii)

Grafos Conocimiento

Use of KG (in SPARQL y Cyber)

Modalities of integration KG + RAG

• Semantic fusion

• KG nodes or subgraphs are transformed into rich text (e.g., natural form triples) and used as
context for the generative model

• Example:

• Convert Cervantes --participated in --> Battle of Lepanto to "Cervantes participated in the Battle of
Lepanto in 1571"

• Hybrid Retrieval

• Two channels are combined

• Vector RAG with embeddings

• Semantic RAG based on KG

• The most relevant combined source is selected or weighted.

• Example - Query: “What is the relationship between Cervantes and the Ottoman Empire?”

• Without KG

• Retrieves a fragment about Cervantes and a fragment about the Ottoman Empire.

• The answer could be vague or disconnected:

• ‘Cervantes was a Spanish writer and the Ottoman Empire was a historical power’.

• With KG: accurate, verifiable and navigable answer

• KG includes the triple: Cervantes → fought against → Ottoman Empire through Battle of Lepanto

• Contextualised answer:

• ‘Miguel de Cervantes participated as a soldier in the Battle of Lepanto in 1571, where he faced the Ottoman
Empire as part of the Holy League’.

RAG with and without KG

Archive of Acción Católica Española

(ACE)

USE CASE IN
DEVELOPMENT
WITH RAG AND

KG

• What is the Archive of “Acción Católica Española” (ACE)?

• Historical archive of the ACE as a documentary source of text in paper format stored in the UPSA
library

• Unique collection of high historical value that offers a deep insight into the role of the Catholic
Church in Spain, especially during the 20th century

• Founded in 1926, the Spanish Catholic Action was a key organization in the religious, social and political
life of the country, with a significant impact in various fields, from politics during the Republic and
Franco's dictatorship to the democratization of Spanish society.

• Documents covering the period from the 1930s to the transition to democracy in Spain.

• Content:

• Includes documents such as minutes of meetings, correspondence, reports, circulars and other records,
typed and in some cases also annotated by hand.

• Interest

• Preservation of the Spanish historical memory (2nd Republic, civil war, dictatorship, transition) of social
and political actors (Catholic workers' movements (Hermandad Obrera Acción Católica - HOAC, Juventud
Obrera Católica - JOC) and women's movements (Acción Católica de la Mujer - ACM).

USE CASE: Digitalization, Publication and Access to ACE

• Objective

• Facilitate the dissemination of and access to the archive through its digitization and ease of
consultation of its content both by experts (researchers, historians, archivists) and civil society in
general.

• Promote research on its content

• Proposal:

• Use of new AI technologies to automate the accessibility and consultation of the relevant
information stored in the archive's documents once they have been digitized with quality OCR.

• Challenges:

• Quality of the documents (old, typed and with handwritten annotations)

• Lack of prior knowledge and no cataloguing of the content.

• Huge volume, both to store once digitalized and to process: more than 3000 boxes with an
average of 300 documents each with possibly several pages per document.

Project: Digitalization, Publication and Access to ACE

** Scalable process starting with a selection of documents from the ACE archive.

1. Digitalization with OCR of the documents (PDF and TXT)

2. Obtaining document information with IA tools

• NER (people, organizations, dates and places)

• Summary

• Key concepts

3. RAG - Facilitating consultation of documents in natural language (chatbot)

4. Publication in institutional and/or external repository (European Cultural Heritage Cloud),
using standard open publication formats for cultural and heritage assets in Europe (CIDOC-
CRM, OAI-PMH (Dublin CORE)).

Digitalization and Access Process

• OCR digitalization

• LLMs for summaries and NER of documents

• RAG: Chatbot

• Creation of KG associating data to the document

• Document + NER, summary, keywords...

• RAG: Queries with HYBRID retrieval

• IA (LLMs) to obtain metadata in open formats (CIDOC-CRM and Dublin Core ontology).

Used Technologies

• Current status

• Subset of the collection digitized (e.g. JOC correspondence)

• Extraction

• Summarization with LLM (Chatgpt)

• NER with BERT, FAIR, ...

• Challenge - improvement: LLM to obtain NER

• Query

• RAG with KG+Vectors

• KG creation (NER association to document)

• KG for document selection

• Selection of KG and associated documents, based on NER from prompt queries

RAG, KG and ACE archive. Current situation and challenges

Example: Summary and NER from an ACE document

Example: Clasification and Key concepts from an ACE document

1. Input: A question-query (prompt) is received from the user from the page

2. Extraction of information from the archive (3 methods) (KGs + vectors):

• Obtaining NERs from the question and searching for these NERs in Neo4j (KG database)

• spaCy is used to extract named entities (NERs) from the question. These entities are queried in the KGs database, Neo4j, to identify documents that
mention them.

• Automatic query generation in Cypher (Neo4j language) using generative AI to search Neo4jA

• Cypher query is automatically generated using a generative AI (GPT) model, based on the user's question. This query is executed in Neo4j to retrieve the
most relevant documents.

• Semantic vector search in ChromaDB

• The question is transformed into a vector and ChromaDB is searched for semantic similarity (vector), returning texts similar to the question.

3. Answer generation:

• All methods load texts from the corresponding documents that are used by a generative AI model to generate an answer.

• A combined answer is generated, which uses all the texts identified by the 3 methods to provide the most complete view possible.

RAG and KG in ACE. Steps of ACE queries

Example: RAG - ACE

ACE and CIDOC-CRM

Properties or RelationsEntities

[E31 Document]

└─ P70 documents ──► [E21 Person]

└─ P70 documents ──► [E53 Place]

└─ P70 documents ──► [E5 Event]

└─ P3 has note ─────► "Resumen o

contenido"

└─ P67 refers to ───► [E74 Group],

[E52 Time-Span], etc.

RDF with CRM-CIDOC (ACE example)

Class Brief Description

E1 CRM Entity Root class (everything is a CRM entity)

E21 Person Individual person

E74 Group Groups, collectives, institutions

E53 Place
Geographical location (country, city,

building...)

E52 Time-Span Time interval

E5 Event Cultural, historical, biographical event...

E7 Activity Specific human activity

E31 Document Document or textual content

E73 Information

Object

Symbolic information (documents, texts,

images...)

E22 Man-Made

Object
Physical object created by humans

Property Meaning

P14 carried out by
An event was carried out by a person or

group

P4 has time-span Temporal association of an event or activity

P7 took place at Geographical location of an event

P70 documents
A document contains information about an

entity

P102 has title Title of an information object

P3 has note Comments, descriptions, summaries

P67 refers to
Information refers to an entity (useful for

NER)

