

Czech Institute of Informatics, Robotics, and Cybernetics Intelligent Systems for Industry Group

Utilization of Semantic Web Technologies within Industrial Automation Domain

Václav Jirkovský

Integration challenge of CPS(s)

- Semantic Big Data Historian
 Plug&Play CPS component
- Ontology Learning for Automotive
- Production Monitoring

Introduction

- AR I
 - Manufacturing is changing
 - Time-to-Volume and Time-to-Market: very rapid product introductions to markets in increasing volumes
 - Products become more complex, greater levels of miniaturization
 - Offering personalized products
 - Challenge is the integration of the equipment and knowledge
 - All levels of production may communicate
 - Requirements for flexible manufacturing
 - Essential enabler Explicit specification of knowledge
 - All of these aspects are encapsulated within Industry 4.0

Cyber-Physical Systems (CPSs)

- Around 2006 term "Cyber-Physical System"
 - Coined by Hellen Gill
 - Increasing importance of the interactions between interconnected computing systems and the physical world
- Definition:

CPSs are integrations of computation and physical *processes.*

Embedded computers and networks monitor and control the physical processes.

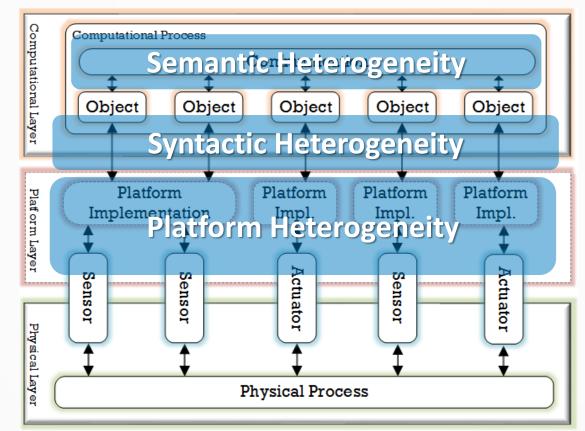
Cyber-Physical Systems Architecture

Basic concept of CPS architecture – 3 parts:

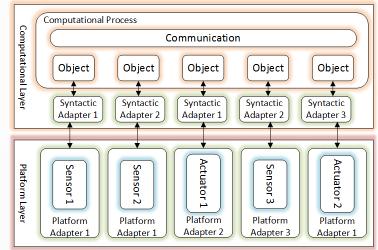
- Cyber part
 - Computing core transforms physical process information into a model of a software system
 - Operate according to a given control algorithm
- Physical part
 - Represents a controlled object
- Network
 - Communication medium between a cyber and a physical part

Integration Challenge of CPSs

Integration Challenge of Cyber-Physical Systems (CPSs)


- Two different levels of a CPS integration the lowlevel and the high-level integration
- Low-level integration
 - Integration of CPS components sensor(s), actuator(s), data model(s) of computational process
- High-level integration
 - Integration of various CPSs to form a more complex and capable system
- Integration process
 - Platform heterogeneity, Syntactic heterogeneity, Semantic heterogeneity

CPS: Low-Level Integration


• General CPS architecture

Integration Process of CPS Components

Integration task: unification of interfaces and knowledge

- 1. Platform heterogeneity
 - Different devices used for CPS from various manufacturers
 - Solution: a unification of different interfaces provided by various manufacturers using adapters
- 2. Syntactic heterogeneity
 - Components may use different formats for data representation
 - Solution: a unification of different formats using adapters

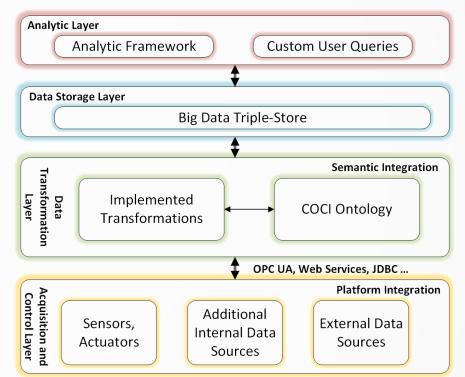
A SE

Integration Process of CPS components

Integration task: unification of interfaces and knowledge

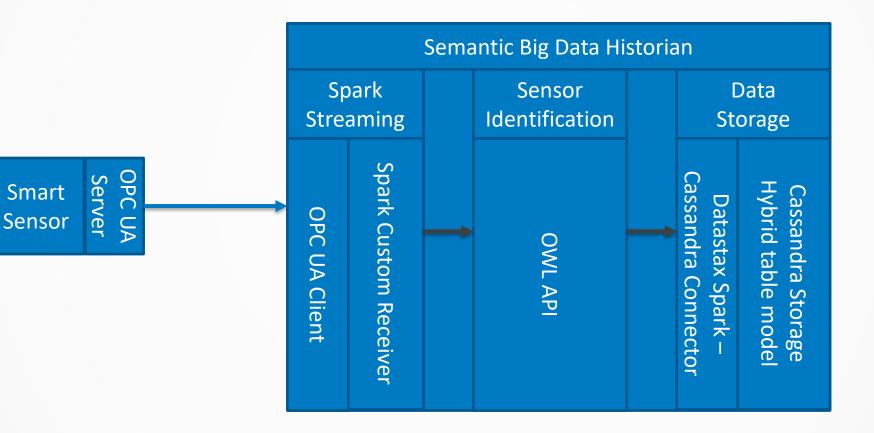
- 3. Semantic heterogeneity
 - Different data models used by CPS components (e.g., same real-world entities are represented by different concepts)
 - Solution: Models integration
 - Identification of corresponding concepts
 - Identification of corresponding relations among concepts
 - Identification of corresponding meaning in a given context
 - Utilization of an ontological description of CPSs and their components. I.e., Web Ontology Language (**OWL**)
 - Ontology matching methods may be exploited for elements identification

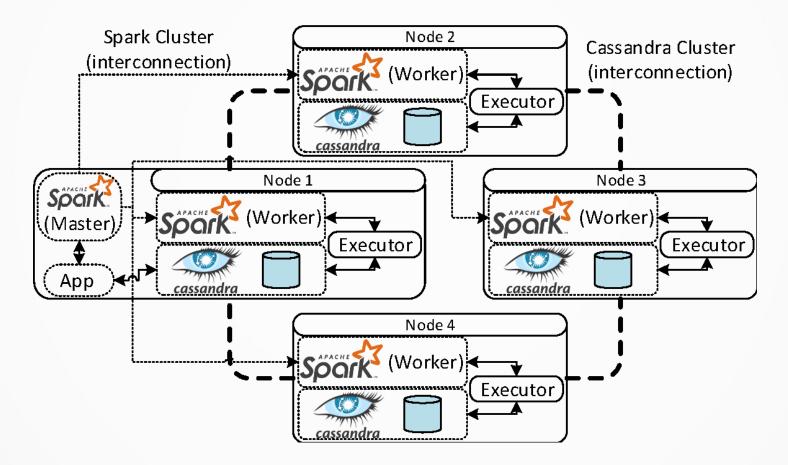
Semantic Big Data Historian


Storage of Shop Floor Data Represented in OWL

- Representation of information about CPS components in OWL may cause performance problems
- The solution for suitable RDF storage consists of two main components
 - An exploitation of a framework which is able to
 - Form distributed system
 - Support data streaming
 - Methods for Big Data processing
 - Suitable structure for RDF storage respecting shop floor data nature
- Semantic Big Data Historian fulfills aforementioned requirements

Semantic Big Data Historian (SBDH)


- 1. Data acquisition layer
 - Collects data sensors, other relevant system MES/ERP
- 2. Transformation layer
 - Transforms data to the unified semantic form according to COCI ontology
- 3. Data storage layer
 - Apache Spark and Apache Cassandra
- 4. Analytic layer
 - Provides access to directly connected storage for custom analytic programs or custom user queries



SBDH Data Flow

Semantic Big Data Historian Based on Apache Spark and Apache Cassandra

www.ciirc.cvut.cz

Data Storage

Vertical Partitioning Model

- Triples are partitioned with the respect to their property
- Stored in files named according the property
- Disadvantages data are not homogeneously distributed

Example: file named hasQuantityUnitOfMeasurement

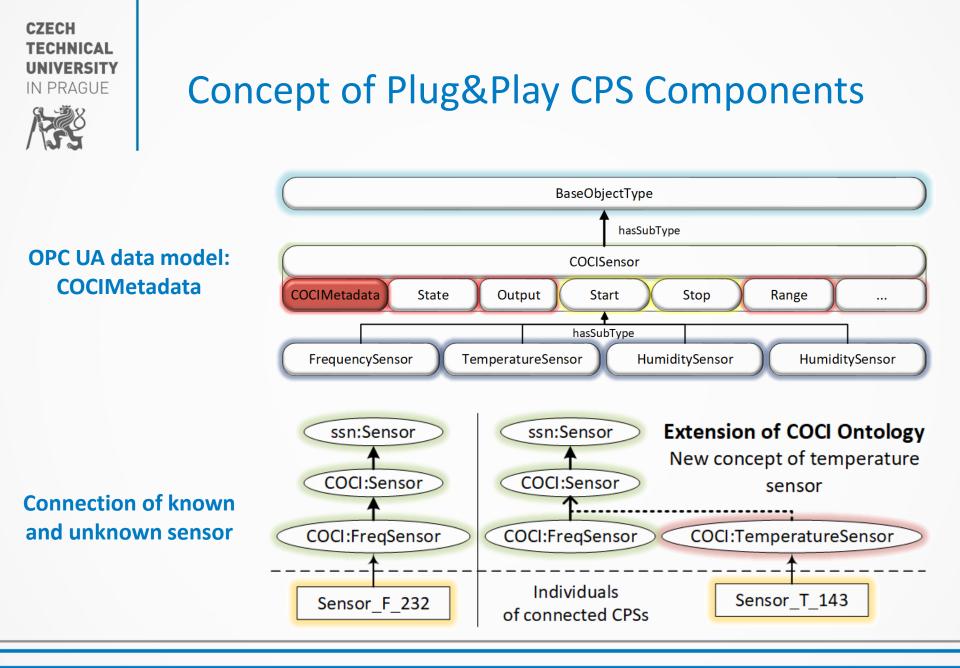
```
:CO2ds048 :parts-per-million
:THSds075 :percentage
:THSds075 :degreeCelsius
```

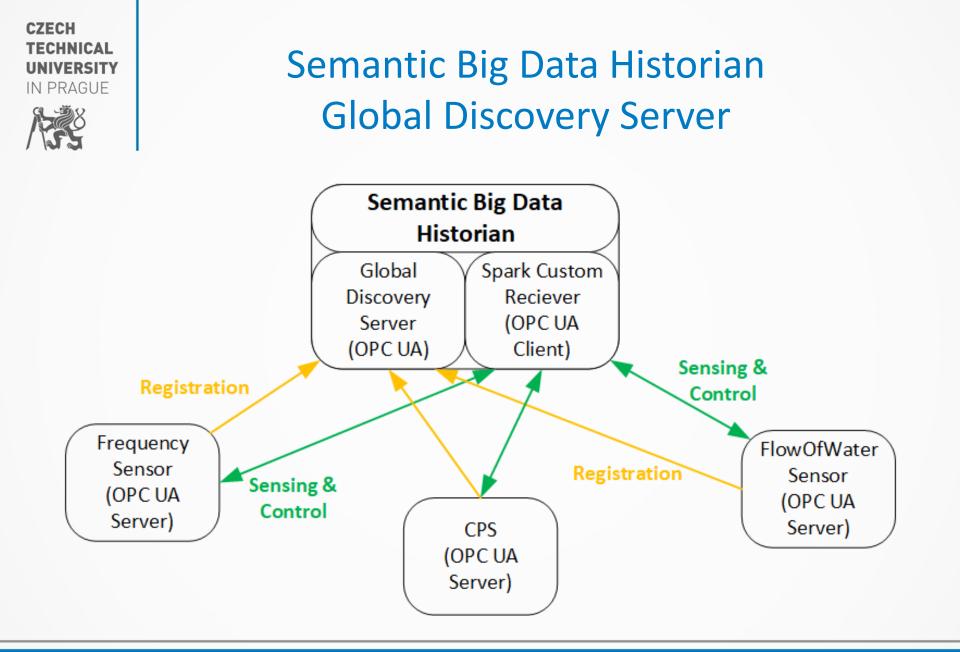
Hybrid SBDH Model

- Previous model poor performance when querying samples with range filter, etc.
- Proposed for sensor measurements
- Partitions subject and property + timestamp

Example: file named CO2ds048#hasQuantityValue:

> 2012-04-29T00:00:10 355.0 2012-04-29T00:00:40 355.1 2012-04-29T00:01:10 355.0


Plug&Play CPS Components



Feasibility of the Integration of CPS Components

Feasibility of proposed solution (together with functionality of SBDH) was demonstrated on

- Concept of Plug&Play CPS components
- Experimantal CPS
- **Concept of Plug&Play CPS components**
- Definition (or identification) of devices (CPS components) using COCI ontology
- Definition of device is stored in OPC UA model (COCImetadata)
- Immediate device utilization without any additional configuration of a system

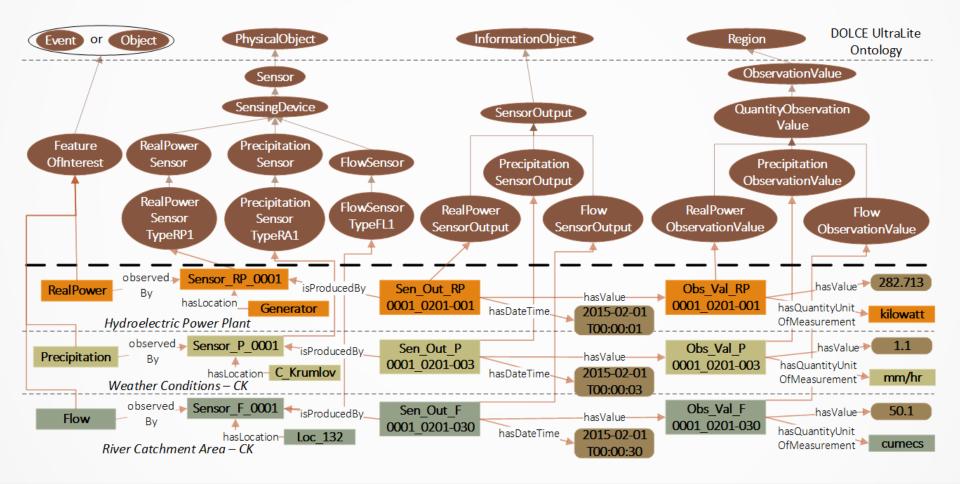
6.12.2018

Semantic Big Data Historian Example of Deployment

Experiments - "Stop-Problem" of the Hydro-Electric Power Plant

Stop-problem

- Turbine vanes are fouled up with filth during the turbine usage
- Decrease in turbine performance
- Turbine restart
 - Shock wave cleans turbine vanes
- Problem/task identify the optimal moment for a restart.


Experiments Hydroelectric Power Plant

- Verifying the concept of cyber-physical systems integration using COCI ontology and SBDH
 - i.e., handling a huge amount of RDF triples
- 38 sensors in the power plant
 - Sampling rate 5 seconds
 - Sensors are connected via OPC UA
- Sensors produce 656,640 samples per day -> 5,253,120 triples per day -> 1,917 mil. triples per year

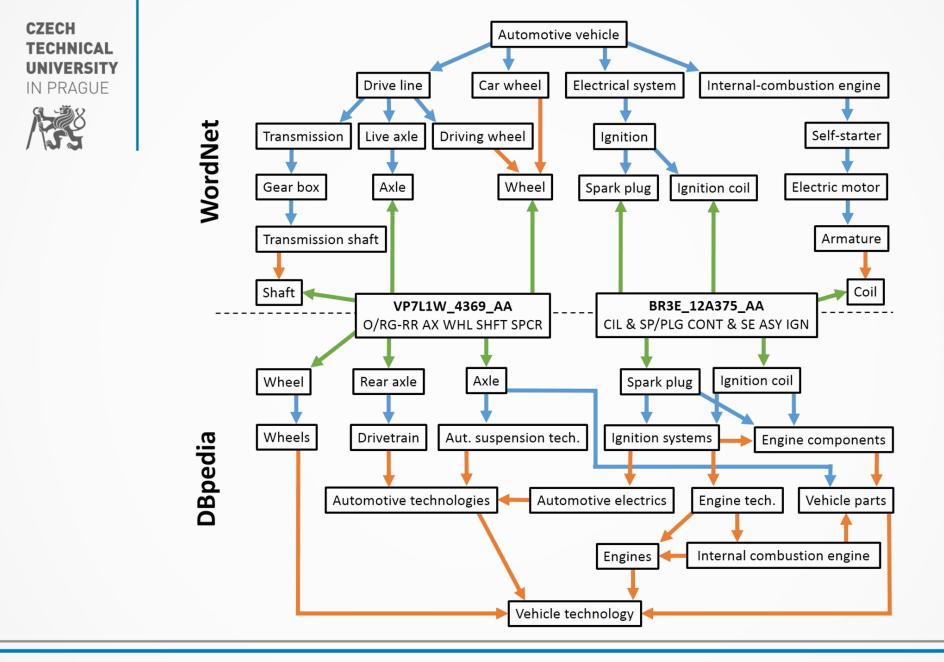
Experimental Cyber-Physical System

Ontology Learning for Automotive

Problem statement

- Ontology learning acquisition of new concepts/relations and extension of existing ontology.
- Integration of spare part records into Ford supply chain ontology.
- Abbreviated spare part description as input for ontology learning process.

Input Data Characteristics

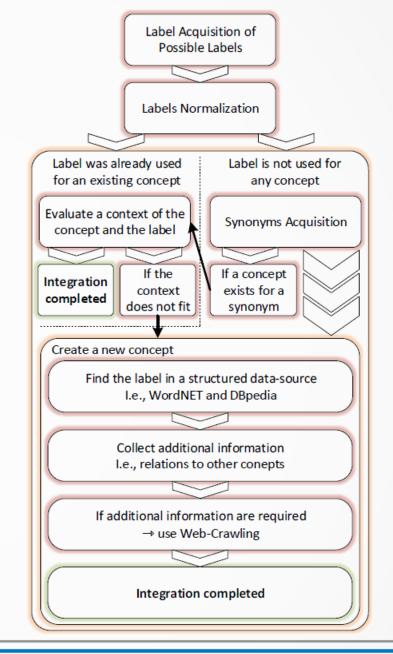

- Examples:
 - BLK CYL
 - PAN ASY OIL
 - SE CSHAFT RR OIL
- Translation using internal database of acronyms
- Ambiguous translation of abbreviated labels
 SE = Seal, Sealant, September, Selenium, ...

– RR = Regulatory Requirement, Rear

Ontology Learning using WordNet and DBpedia

- Search suitable concepts in structured resources.
- Contain semantic relations, meronymy/holonymy, hypernymy/hyponymy.
- Simplified approach use all permutations and subsets of all possible spare part label translations.

Problems



- General concepts in both datasets
 - Only mappings for subsets of spare part description
 - Out of context
 - Meaningless mappings.
- Mappings for given spare part are unrelated.
 - SW ASY-OIL PRESS SDR \rightarrow Switch in WordNet
 - Station wagon, Oil pressure in DBpedia
 - − INSRT-VLV ST INTK → Intake, Valve seat in DBpedia
 - Intake, Intake valve, Valve, Seat in WordNet
- Need to take full context into account.

Proposed approach

- Use web mining to find correct translation of the spare part label.
- Define specialized concepts.
- Define general concepts using DBpedia and WordNet.
- Find relations between specialized concepts and general concepts using web mining.

- Search permutations of full label and count occurrence in web documents.
- Most frequent combination is used as the correct spare part label.
- E.g., SE CSHAFT RR OIL = Crankshaft rear oil seal

Semantic relations

- Search lexico-syntactic patterns in web documents to find semantic relations between the specialized concept and general concepts.
- Meronymy: within, part of, ...
- Holonymy: consists of, have, with, ...
- Hypernymy: is a, is typically a, ...
- *Hyponymy*: called, like, ...

Examples

- Main bearing: ... most engines have at least two main bearings... → holonymy
- Impeller: Impeller is a rotating component of a centrifugal pump... → meronymy
- Oil filter: The overpressure relief value is frequently incorporated into the oil filter. → meronymy
- Crankpin: A crankpin or crank journal is a journal in an engine... → meronymy, hyponymy

Production Monitoring

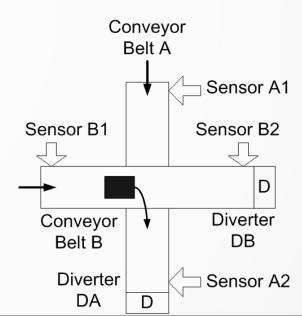
- Definition a transformation of observations into a state (product) classification
- Depends on many factors (e.g., sampling rate of sensors, quality of their output, etc.)
- Influences (or part of) various processes and systems
 - Scada, MES, ERP
 - Monitoring of KPIs
 - Diagnostics

Semantic Web Technologies for Production Monitoring

- Utilization of
 - Web Ontology Language
 - Reasoning
 - Semantic Web Rule Language
- Production monitoring task
 - Transformation of observations (a given individual) into a corresponding concept
 - Recognize and classify a (semi-)product (as well as situation) in some "level of completeness"
 - Be able to determine subsequent operations, etc.

Production Monitoring Reasoning

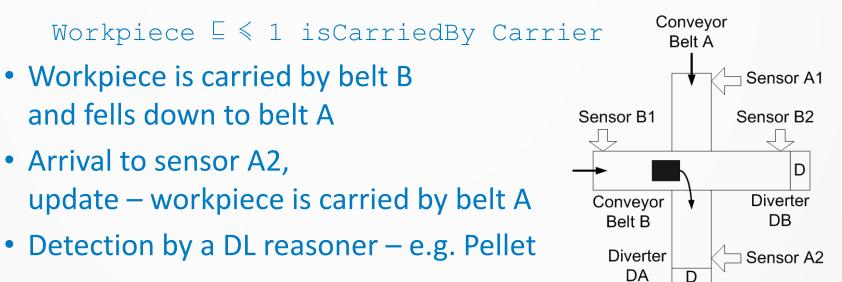
- Reasoners are able to classify individuals into suitable and corresponding concepts
- Benefit no additional tool and description are needed
 - Only definition in OWL and reasoner
- Restrictions
 - Close-World vs. Open-World reasoning
 - → Proper definition of ontology axioms is needed
 - Closures are needed



- Example
 - Sensors
 - At the beginning and the end of the conveyor belts

Production Monitoring

Reasoning


- Stolen workpieces from conveyor
- New workpieces on the conveyor
- Fallen workpieces from conveyor B to A
- Monitoring Using OWL Language
 - Two approaches to monitoring
 - Detecting inconsistency (diagnostics)
 - Classification to a class

- Monitoring of system behavior using consistency checking
 - Illustration on scenario with workpieces
 - Constraint a workpiece is on one carrier at most

Production Monitoring Reasoning

- Monitoring of system behavior by adding special classes
 - Illustration on scenario with workpieces
 - Special class WorkpieceWithMoreCarriers subclass of the Workpiece

WorkpieceWithMoreCarriers ≡ Workpiece □ ≥ 2 isCarriedBy Carrier

 Production monitoring – instance of the Workpiece is classified by reasoner also as the WorkpieceWithMoreCarriers

Description: W		Property assertions: W	Kale Section And America Section 2017 Sectio		
Types 🚯		Object property assertions 💮	Axioms		
Workpiece	@80	isCarriedBy A	A DifferentFrom B		
WorkpieceWithMoreCarriers	20	isCarriedBy B	♦ W isCarriedBy A	\odot	
Same individuals 🕕	Explain	Data property assertions	♦ W isCarriedBy B	\odot	
	CAPIGIN		WorkpieceWithMoreCarriers EquivalentTo Workpiece and	@ 8	
			(isCarriedBy min 2 Carrier)		
Different individuals 🕞		Negative object property assertio	ОК		

Production Monitoring SWRL

- Open-World Assumption
 - Related to a definition of a concept using quantification of its component

Description: 7-brick-column	2088				
SubClass Of 🛨	Description: anonymousP	roduct 2018	Property assertions: anonymousPr⊞⊟■⊠		
e column	Types 🛨		Object property assertions 🕂		
hasPart exactly 7 brick_2x2	product	?@XO	hasPart brick1_2x2 ?@ 🛛 O		
General class axioms 🛨	column	?@	hasPart brick2_2x2 ?@&O		
SubClass Of (Anonymous Ancestor)	Description: anonymousProduct 2008 Property assertions: anonymousPr				
2-brick-column or 5-brick-column or 7-brick-column	Types 🕂		Object property assertions 🕒		
hasPart only brick_2x2	product	?@XO	hasPart brick1_2x2 ?@&O		
column or lintel	7-brick-column	?@	hasPart brick3_2x2 ?@&O		
lego_component or product			hasPart brick4_2x2 ?@&O		
Disjoint With 🛨	Same Individual As 🛨		hasPart brick5_2x2 ?@&O		
5-brick-column, 2-brick-column	Different Individuals 🛨		hasPart brick2_2x2 ?@&O		
			hasPart brick6_2x2 ?@&O		

Production Monitoring SWRL

- SWRL enables a "transition" from open to close world
- Example of 5-brick column

product(?p) ∧ brick2x2(?b) ∧ hasPart(?p,?b)
° sqwrl: makeSet(? bricks,?b) ° sqwrl: size(? size,? bricks)
∧ swrlb: lessThanOrEqual(? size, 5)
→ sqwrl: select(?p,? size)

Conclusions

- Industrial Automation companies
 - Really slow in accepting new technologies
 - Supply chain is typically not transparent
 - Obstacles for flexible manufacturing
- Big Data paradigm
 - Force companies to think about meaning of data
- HW capabilities provide means for processing huge amount of data in format of RDF triples
- Leading vendors of SW and HW understood the importance of vertical and horizontal integration