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Comprehending 
Neural Networks

NNs are widely used for classification
 current hype about Deep Neural Networks (DNN)
 outperform previous state-of-the-art 

approaches in many domains
 DNNs might represent complex, abstract 

concepts in hidden nodes

Understanding how a NN comes to its decision
is not trivial
 we only know the network’s structure and its weights
 predictive model: usually NNs seen and used as a black box
 learned higher level concepts remain hidden
 exception: visual domain



Comprehensible
Decision Systems
Comprehensible description of a NN's behaviour 
sometimes essential
 safety critial domains, e.g. medicine, power stations, autonomous 

driving, financial markets

Solution:  → represent NN's behaviour as decision rules

IF X1<0.5 AND X2>0.75 THEN OUT=1
IF X1>0.9 THEN OUT=1
IF X1>0.5 AND X1<0.9 AND X3>0.2 THEN OUT=1
IF X2>0.2 AND X3<0.5 AND X5<0.5 THEN OUT=1
IF X2>0.4 AND X3<0.7 THEN OUT=1
IF X2<0.2 THEN OUT=1
IF X4>0.8 THEN OUT=1
IF X3<0.7 AND X3>0.2 AND X4<0.3 THEN OUT=1



Comprehensible
Decision Systems
Rules are considered to be comprehensible and interpretable
 symbolic rule model can be inspected
 discover relations between inputs and target concept
 experts can check critical rules, e.g.: IF … THEN emergency braking

 taken decisions can be explained by firing rules
 firing rule reveals decisive attributes and the training examples from 

which the rule was learned

IF X1<0.5 AND X2>0.75 THEN OUT=1
IF X1>0.9 THEN OUT=1
IF X1>0.5 AND X1<0.9 AND X3>0.2 THEN OUT=1
IF X2>0.2 AND X3<0.5 AND X5<0.5 THEN OUT=1
IF X2>0.4 AND X3<0.7 THEN OUT=1
IF X2<0.2 THEN OUT=1
IF X4>0.8 THEN OUT=1
IF X3<0.7 AND X3>0.2 AND X4<0.3 THEN OUT=1



Extracting Rules from 
Neural Networks

Rule extraction strategies
 Decompositional (considering NN's structure)

IF X1=hi OR X2=hi OR X3=hi THEN OUT=hi
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Extracting Rules from 
Neural Networks

Rule extraction strategies
 Decompositional (considering NN's structure)
 Pedagogical (NN as black box)

IF X1<0.5 AND X2>0.75 THEN OUT=1
IF X1>0.9 THEN OUT=1
IF X1>0.5 AND X1<0.9 AND X3>0.2 THEN OUT=1
IF X2>0.2 AND X3<0.5 AND X5<0.5 THEN OUT=1
IF X2>0.4 AND X3<0.7 THEN OUT=1
IF X2<0.2 THEN OUT=1
IF X4>0.8 THEN OUT=1
IF X3<0.7 AND X3>0.2 AND X4<0.3 THEN OUT=1



Extracting Rules from 
Neural Networks

Rule extraction strategies
 Decompositional (considering NN's structure)
 Pedagogical (NN as black box)
 Eclectic (mixture of both)

Models
 previous research in the 90s focussed on 

extracting rules from flat NNs
 types of extracted rules (DNFs, decision tree, fuzzy 

rules, ...) 



DeepRED: Extraction of Rules 
from Deep Neural Networks 

Goals
 make hidden features accessible (in contrast to pedagogical)
 exploit deep structure to improve efficacy of rule extraction and 

induction process 

Based on CRED
 Continuous/discrete Rule Extractor via Decision tree induction 

(CRED) [Sato and Tsukimoto, 2001]
 only supports NNs with one hidden layer
 uses C4.5 to induce rules

DeepRED extends CRED to arbitrary number of layers
 roughly speaking: apply CRED layer by layer
 decomposible w.r.t. neurons, pedagogical w.r.t. neurons' behaviour



Pedagogical Baseline 
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Extracting Rules from 
Neural Networks

IF X1<0.5 AND X2>0.75 THEN OUT=1
IF X1>0.9 THEN OUT=1
IF X1>0.5 AND X1<0.9 AND X3>0.2 THEN OUT=1
IF X2>0.2 AND X3<0.5 AND X5<0.5 THEN OUT=1
IF X2>0.4 AND X3<0.7 THEN OUT=1
IF X2<0.2 THEN OUT=1
IF X4>0.8 THEN OUT=1
IF X3<0.7 AND X3>0.2 AND X4<0.3 THEN OUT=1

Goals of extracting rules from (deep) neural networks
 make hidden logic and features accessible 
 exploit deep structure to improve efficacy of rule extraction and 

induction process 

Solution by DeepRED: → Mimic internal logic of NN
                                  at each layer and neuron



DeepRED: Extraction of Rules 
from Deep Neural Networks 
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DeepRED: Extraction of Rules 
from Deep Neural Networks 

IF h21>0.6 AND h24>0.3  
    THEN o=0
IF h21>0.6 AND h24<=0.3 
    THEN o=1
IF h21<=0.6 
    THEN o=1

IF h12>0.4 AND h110<=0.1 
   THEN h23<=0.5
IF h12>0.4 AND h110>0.1  
   THEN h24>0.3
IF h12<=0.4 AND h11<=0.4 
   THEN h21>0.6
IF h12<=0.4 AND h11 >0.1 
   THEN h21<=0.6

IF x1>0.5  AND x2>0.6  
    THEN h11<=0.4
IF x1>0.5  AND x2<=0.6 
    THEN h11>0.4
IF x1<=0.5  …
...



DeepRED: Extraction of Rules 
from Deep Neural Networks 

IF x1<0.5 AND x2>0.75 THEN o=1
IF x1>0.9 THEN o=1
IF x1>0.5 AND x1<0.9 AND x3>0.2 THEN o=1
IF x2>0.2 AND x3<0.5 AND x5<0.5 THEN o=1
IF x2>0.4 AND x3<0.7 THEN o=1
IF x2<0.2 THEN o=1
IF x4>0.8 THEN o=1
IF x3<0.7 AND x3>0.2 AND x4<0.3 THEN o=1





Experimental setup

Datasets and DNNs used

Evaluation measures
 fidelity on test set: accuracy on mimicking NN's behaviour
 number of terms: tries to assess comprehensibility of found rule set

Algorithm setup
 36 combinations of varying C4.5 parameters, pruning parameters and 

train set sizes 



Can DeepRED make use of complex concepts 
hidden in NNs?

artif-I
 artificial dataset randomly drawn
 output defined by rule set which cannot easily be realized by 
decision trees
 contains pairwise 

comparisons between inputs

IF x1 = x2 THEN out=1
IF x1 > x2 AND x3 > 0.4 THEN out=1
IF x3 > x4 AND x4 > x5 AND x2 > 0 THEN out=1
ELSE out=0



Can DeepRED make use of complex concepts 
hidden in NNs?

artif-I
 artificial dataset randomly drawn
 output defined by rule set which cannot easily be realized by 
decision trees
 contains pairwise 

comparisons between inputs

Results
DeepRED outperforms 
pedagogical baseline
 especially in 

comprehensibility dimension
 hidden concepts lead to compactness



Can DeepRED make use of complex concepts 
hidden in NNs?

XOR
 parity function: x ∈ {0,1}8  XOR(x→ 1,x2,x3,x4,x5,x6,x7,x8}
 28 examples split into 150 training and 106 test examples
 top-down approaches (e.g. C4.5) usually need all examples to 
learn consistent model

Results
 as expected, baseline fails
DeepRED is able to extract 
rules that classify all or almost 
all test examples correctly



Can DeepRED make use of complex concepts 
hidden in NNs?

XOR
 parity function: x ∈ {0,1}8  XOR(x→ 1,x2,x3,x4,x5,x6,x7,x8}
 28 examples split into 150 training and 106 test examples
 top-down approaches (e.g. C4.5) usually need all examples to 
learn consistent model

Results
 even with only 75 training
examples DeepRED extracts
meaningful rules 
(>90% fidelity)

DeepRED effectively captures 
inherent concepts otherwise 
non accessible



More insights

Limitations
 artif-II
 can easily be realized by decision tree
 baseline finds more comprehensible rules with very good 

fidelity

Pruning
 removal of up to 10% inputs possible without substantial 
decrease in fidelity

 but reduction in number of conditions of several magnitudes

Training set size
DeepRED quite stable w.r.t. reduction of training set



Conclusions

DeepRED
 to our knowledge, first attempt on extracting rules form deep 
neural networks
 important step towards making NN's decisions transparent

 outperforms pedagogical baselines for most of the analyzed 
cases

DeepRED benefits from deep architecture of NNs when 
addressing data with complex concepts



Questions? 

IF x1 = x2 THEN out=1
IF x1 > x2 AND x3 > 0.4 THEN out=1
IF x3 > x4 AND x4 > x5 AND x2 > 0 THEN out=1
IF x4=look OR x4=see THEN out=1
ELSE out=0
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