

DeepRED – Rule Extraction from Deep Neural Networks

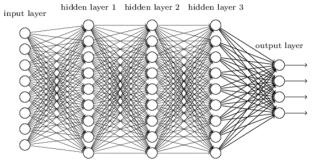
Jan Ruben Zilke, Eneldo Loza Mencía, Frederik Janssen Knowledge Engineering Group, TU Darmstadt j.zilke@mail.de {eneldo,janssen}@ke.tu-darmstadt.de

Outline

Comprehension and Extraction from Neural Networks

DeepRED: Rule extraction from Deep Neural Networks

Experimental Results


Conclusions

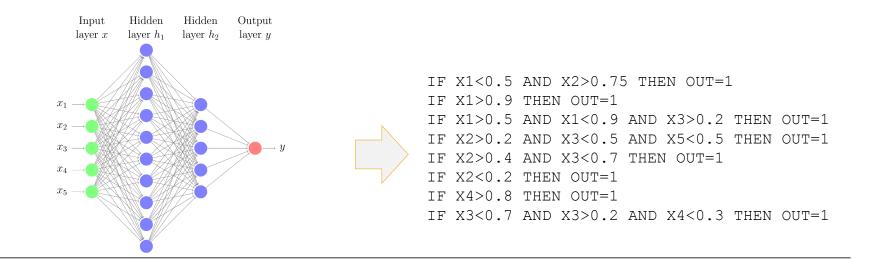
Comprehending Neural Networks

NNs are widely used for classification

- current hype about Deep Neural Networks (DNN)
- outperform previous state-of-the-art approaches in many domains
- DNNs might represent complex, abstract concepts in hidden nodes

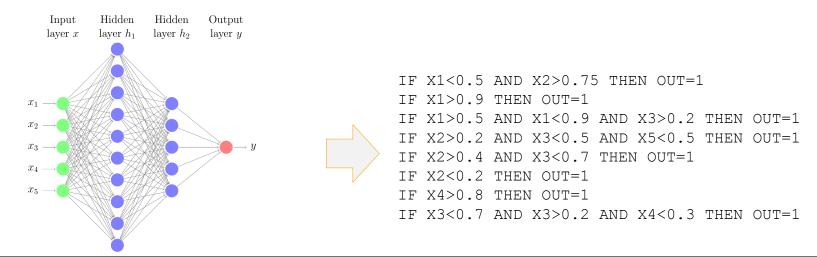
Understanding how a NN comes to its decision is not trivial

- we only know the network's structure and its weights
- predictive model: usually NNs seen and used as a black box
- learned higher level concepts remain hidden
 - exception: visual domain


Comprehensible Decision Systems

Comprehensible description of a NN's behaviour sometimes essential

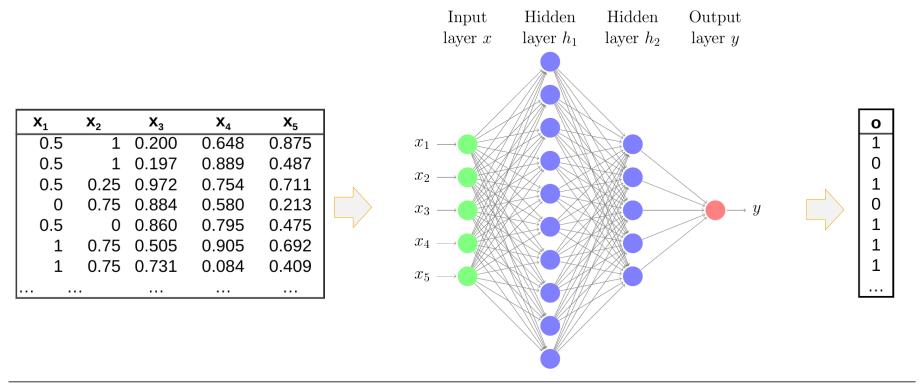
 safety critial domains, e.g. medicine, power stations, autonomous driving, financial markets



Comprehensible Decision Systems

Rules are considered to be comprehensible and interpretable

- symbolic rule model can be inspected
 - discover relations between inputs and target concept
 - experts can check critical rules, e.g.: IF ... THEN emergency braking
- taken decisions can be explained by firing rules
 - firing rule reveals decisive attributes and the training examples from which the rule was learned


Rule extraction strategies

Decompositional (considering NN's structure)

- Decompositional (considering NN's structure)
- Pedagogical (NN as black box)

TECHNISCHE UNIVERSITÄT

DARMSTADT

Rule extraction strategies

- Decompositional (considering NN's structure)
- Pedagogical (NN as black box)

X ₁	X ₂	X ₃	X ₄	X ₅	IF X1<0.5 AND X2>0.75 THEN OUT=1	
0.5	_	0.200	0.648	0.875	IF X1>0.9 THEN OUT=1	
0.5	1	0.197	0.889	0.487	IF X1>0.5 AND X1<0.9 AND X3>0.2 THEN OUT=1	
0.5	0.25	0.972	0.754	0.711	IF X2>0.2 AND X3<0.5 AND X5<0.5 THEN OUT=1	
0	0.75	0.884	0.580	0.213	IF X2>0.4 AND X3<0.7 THEN OUT=1	
0.5	0	0.860	0.795	0.475	IF X2<0.2 THEN OUT=1	
1	0.75	0.505	0.905	0.692	IF X4>0.8 THEN OUT=1	
1	0.75	0.731	0.084	0.409	IF X3<0.7 AND X3>0.2 AND X4<0.3 THEN OUT=1	

TECHNISCHE UNIVERSITÄT DARMSTADT

- Decompositional (considering NN's structure)
- Pedagogical (NN as black box)
- Eclectic (mixture of both)

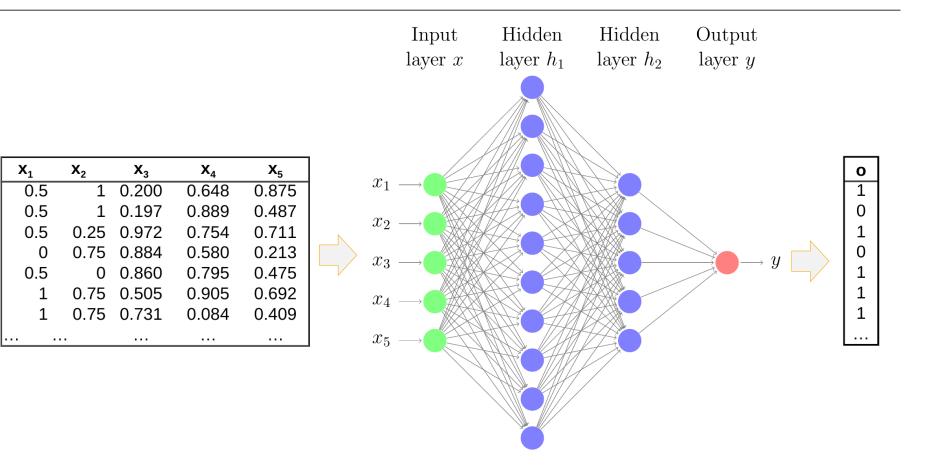
Models

- previous research in the 90s focussed on extracting rules from flat NNs
- types of extracted rules (DNFs, decision tree, fuzzy rules, ...)

Goals

- make hidden features accessible (in contrast to pedagogical)
- exploit deep structure to improve efficacy of rule extraction and induction process

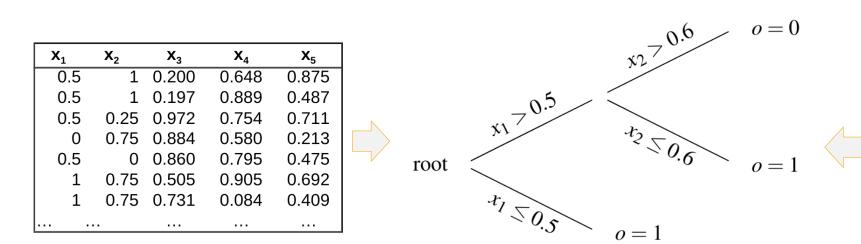
Based on CRED

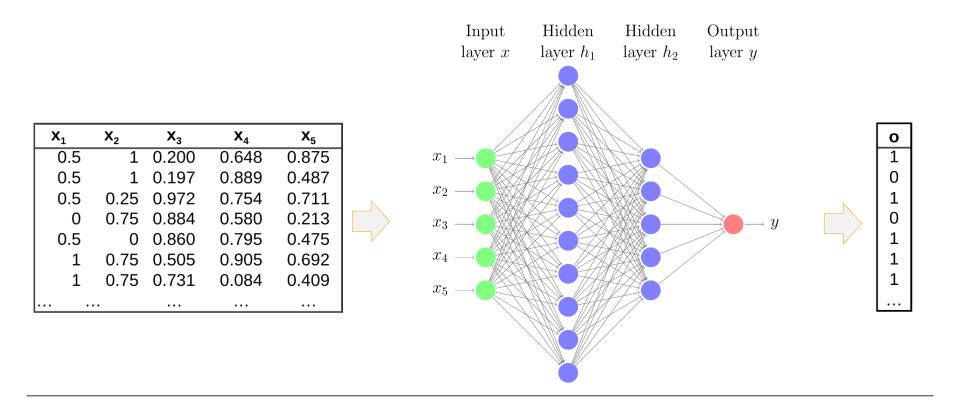

- Continuous/discrete Rule Extractor via Decision tree induction (CRED) [Sato and Tsukimoto, 2001]
- only supports NNs with one hidden layer
- uses C4.5 to induce rules

DeepRED extends CRED to arbitrary number of layers

- roughly speaking: apply CRED layer by layer
- decomposible w.r.t. neurons, pedagogical w.r.t. neurons' behaviour

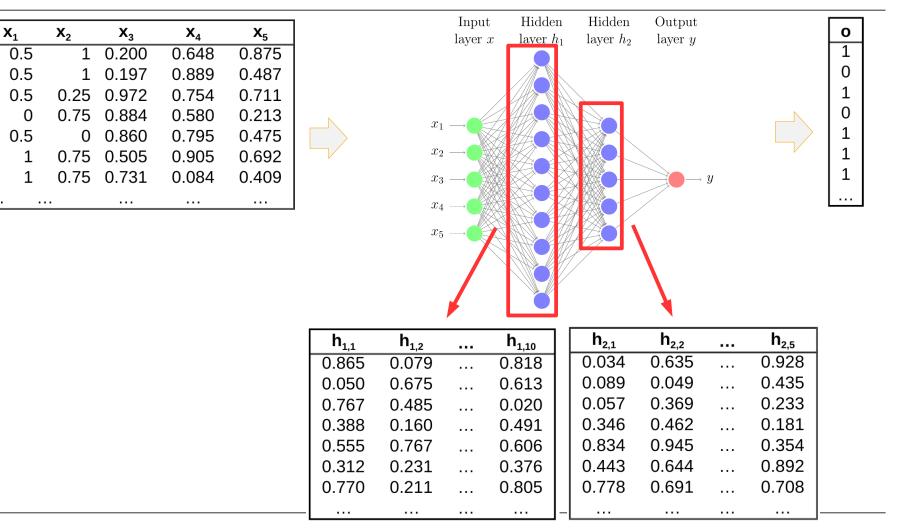
Pedagogical Baseline




Pedagogical Baseline

Ο

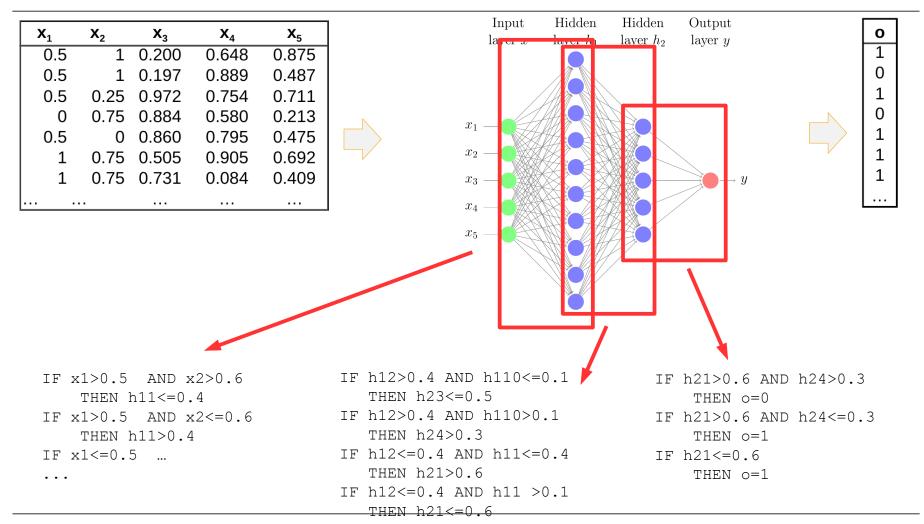
Goals of extracting rules from (deep) neural networks


- make hidden logic and features accessible
- exploit deep structure to improve efficacy of rule extraction and induction process

Solution by DeepRED: → Mimic internal logic of NN at each layer and neuron

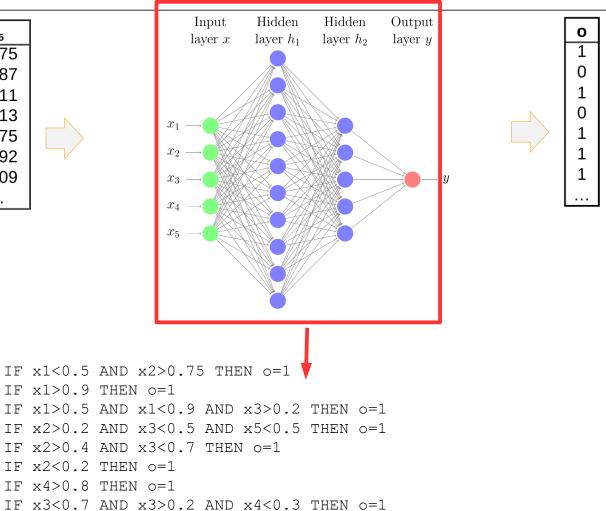
X ₁	X ₂	X ₃	X ₄	X 5
0.5	1	0.200	0.648	0.875
0.5	1	0.197	0.889	0.487
0.5	0.25	0.972	0.754	0.711
0	0.75	0.884	0.580	0.213
0.5	0	0.860	0.795	0.475
1	0.75	0.505	0.905	0.692
1	0.75	0.731	0.084	0.409


	ТF	X1<0.5	AND X2>0.75 THEN OUT=1	0
			THEN OUT=1	1
			AND X1<0.9 AND X3>0.2 THEN OUT=1	0
			AND X3<0.5 AND X5<0.5 THEN OUT=1	1
>			AND X3<0.7 THEN OUT=1	0
			THEN OUT=1	1
			THEN OUT=1	1
	IF	X3<0.7	AND X3>0.2 AND X4<0.3 THEN OUT=1	1
				-

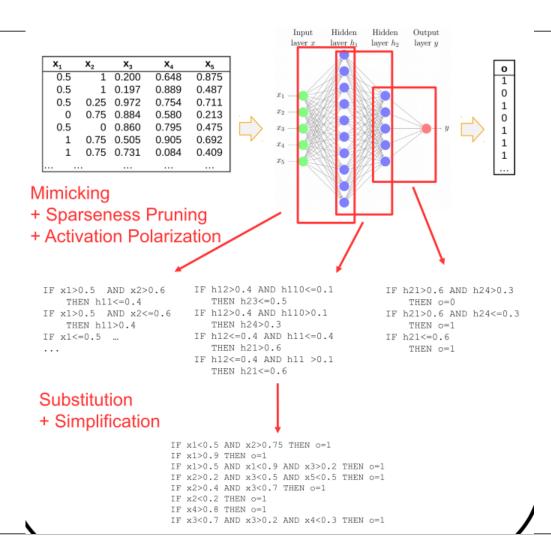


X ₁	X ₂	X ₃	X ₄	X 5
0.5	1	0.200	0.648	0.875
0.5	1	0.197	0.889	0.487
0.5	0.25	0.972	0.754	0.711
0	0.75	0.884	0.580	0.213
0.5	0	0.860	0.795	0.475
1	0.75	0.505	0.905	0.692
1	0.75	0.731	0.084	0.409

h _{1,1}	h _{1,2}	 h _{1,10}		h _{2,1}	h _{2,2}	 h _{2,5}
0.865	0.079	 0.818		0.034	0.635	 0.928
0.050	0.675	 0.613		0.089	0.049	 0.435
0.767	0.485	 0.020		0.057	0.369	 0.233
0.388	0.160	 0.491		0.346	0.462	 0.181
0.555	0.767	 0.606		0.834	0.945	 0.354
0.312	0.231	 0.376		0.443	0.644	 0.892
0.770	0.211	 0.805		0.778	0.691	 0.708
		 	_			



ΙF


ΤF

X 1	X ₂	X ₃	X ₄	X 5
0.5	1	0.200	0.648	0.875
0.5	1	0.197	0.889	0.487
0.5	0.25	0.972	0.754	0.711
0	0.75	0.884	0.580	0.213
0.5	0	0.860	0.795	0.475
1	0.75	0.505	0.905	0.692
1	0.75	0.731	0.084	0.409

Experimental setup

TECHNISCHE UNIVERSITÄT DARMSTADT

Datasets and DNNs used

	#attributes	#training ex.	#test ex.	NN structure	acc(training)	acc(test)
MNIST	784	12056	2195	784-10-5-2	99.6%	98.8%
letter	16	1239	438	16-40-30-26	96.9%	97.3%
artif-I	5	20000	10000	5-10-5-2	99.5%	99.4%
artif-II	5	3348	1652	5-10-5-2	99.4%	99.0%
XOR	8	150	106	8-8-4-4-2-2-2	100%	100%

Evaluation measures

- fidelity on test set: accuracy on mimicking NN's behaviour
- number of terms: tries to assess comprehensibility of found rule set

Algorithm setup

 36 combinations of varying C4.5 parameters, pruning parameters and train set sizes

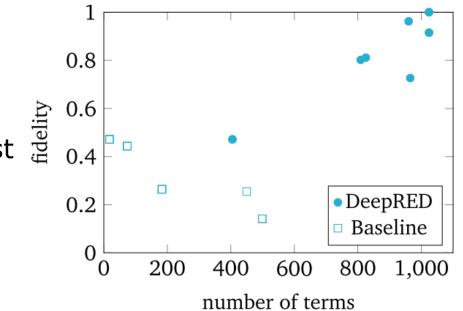
artif-I

- artificial dataset randomly drawn
- output defined by rule set which cannot easily be realized by decision trees
 - contains pairwise comparisons between inputs

X ₁	X ₂	X ₃	X ₄	X 5	
0.5	1	0.200	0.648	0.875	
0.5	1	0.197	0.889	0.487	IF $x1 = x2$ THEN out=1
0.5	0.25	0.972	0.754	0.711	IF $x1 > x2$ AND $x3 > 0.4$ THEN out=1
0	0.75	0.884	0.580	0.213	IF $x3 > x4$ AND $x4 > x5$ AND $x2 > 0$ THEN out
0.5	0	0.860	0.795	0.475	ELSE out=0
1	0.75	0.505	0.905	0.692	
1	0.75	0.731	0.084	0.409	

artif-I

- artificial dataset randomly drawn
- output defined by rule set which cannot easily be realized by decision trees
- contains pairwise comparisons between inputs DeepRED Baseline 0.95 fidelity Results DeepRED outperforms 0.9 pedagogical baseline Я especially in comprehensibility dimension 0.85 50 100 150 200 250 300 hidden concepts lead to compactne number of terms

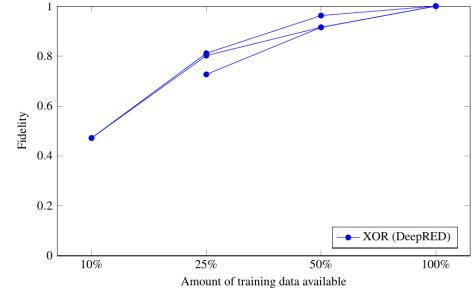


XOR

- parity function: $x \in \{0,1\}^8 \rightarrow XOR(x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8\}$
- 2⁸ examples split into 150 training and 106 test examples
- top-down approaches (e.g. C4.5) usually need all examples to learn consistent model

Results

- as expected, baseline fails
- DeepRED is able to extract rules that classify all or almost all test examples correctly



XOR

- parity function: $x \in \{0,1\}^8 \rightarrow XOR(x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8\}$
- 2⁸ examples split into 150 training and 106 test examples
- top-down approaches (e.g. C4.5) usually need all examples to learn consistent model

Results

- even with only 75 training examples DeepRED extracts meaningful rules (>90% fidelity)
- DeepRED effectively captures inherent concepts otherwise non accessible

More insights

Limitations

- artif-II
 - can easily be realized by decision tree
 - baseline finds more comprehensible rules with very good fidelity

Pruning

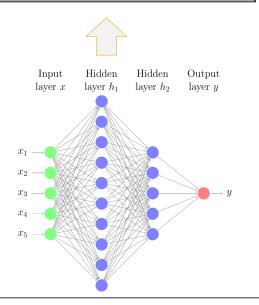
- removal of up to 10% inputs possible without substantial decrease in fidelity
- but reduction in number of conditions of several magnitudes

Training set size

DeepRED quite stable w.r.t. reduction of training set

Conclusions

DeepRED


- to our knowledge, first attempt on extracting rules form deep neural networks
 - Important step towards making NN's decisions transparent
- outperforms pedagogical baselines for most of the analyzed cases
- DeepRED benefits from deep architecture of NNs when addressing data with complex concepts

Questions?

X 1	X ₂	X ₃	X ₄	X 5	
0.5	1	0.200	0.648	0.875	Γ
0.5	1	0.197	0.889	0.487	
0.5	0.25	0.972	0.754	0.711	
0	0.75	0.884	0.580	0.213	
0.5	0	0.860	0.795	0.475	
1	0.75	0.505	0.905	0.692	
1	0.75	0.731	0.084	0.409	

h _{1,1}	h _{1,2}	 h _{1,10}	h _{2,1}	h _{2,2}	 h _{2,5}	0
0.865	0.079	 0.818	0.034	0.635	 0.928	1
0.050	0.675	 0.613	0.089	0.049	 0.435	0
0.767	0.485	 0.020	0.057	0.369	 0.233	1
0.388	0.160	 0.491	0.346	0.462	 0.181	0
0.555	0.767	 0.606	0.834	0.945	 0.354	1
0.312	0.231	 0.376	0.443	0.644	 0.892	1
0.770	0.211	 0.805	0.778	0.691	 0.708	1

IF x1 = x2 THEN out=1 IF x1 > x2 AND x3 > 0.4 THEN out=1 IF x3 > x4 AND x4 > x5 AND x2 > 0 THEN out=1 IF x4=look OR x4=see THEN out=1 ELSE out=0