Practical Applications of Semantic Web **Technologies in Domain**specific Information Systems

MARTIN LEDVINKA martin.ledvinka@fel.cvut.cz Knowledge-based And Software Systems Group FEE CTU in PRAGUE

Table of Contents

- 1. Why? What's the Catch?
- 2. Object-ontological Mapping
- 3. Java OWL Persistence API
- 4. Practical Applications of Semantic Web Technologies in Domainspecific Systems
- 5. Conclusions

KBSS @ FEE CTU in Prague

- <u>https://kbss.felk.cvut.cz</u>, <u>https://github.com/kbss-cvut</u>
- Research areas
 - Ontologies and Semantic Web
 - Linked Open Data
 - Domain modeling and ontology engineering
 - Ontology-based information systems
 - Ontology authoring supported by text analysis
 - Reasoning and query answering in Description Logics

Glossary

- Semantic Web (SW) technologies
 - RDF(S), OWL (2), ontologies, SPARQL, Linked Data etc.
- Domain-specific Systems
 - (Information) systems supporting users in a particular domain, built upon a domain model
 - Concepts and relationships from the domain are directly reflected in the system
 - E.g., aviation, urbanism

Why? What's the Catch?

Why Use SW Technologies?

- Formal ontologies allow precise conceptualization of the domain
- Globally identified constructs (concepts, properties) facilitate interoperability
- Model created in expressive languages allows to infer implicit knowledge from data
- Standardized data definition, manipulation and query languages
- Standardized data serialization formats

Domain Conceptualization?

Building is a construction

- both above and below ground
- spatially compact
- with walls and roof
- with heating

Act 406/2000 Coll., on Energy Management Building is a construction

- above ground
- with solid foundations
- spatially compact
- with walls and roof

Domain Conceptualization

Unique Identifiers and Precise Definition

<http://onto.fel.cvut.cz/ontologies/laws/406-2000/Building>

skos:definition "Construction both above and below ground ...";

ufo:has-part <http://onto.fel.cvut.cz/ontologies/law/406-2000/Heating> .

<http://onto.fel.cvut.cz/ontologies/laws/256-2013/Building>

skos:definition "Construction above ground ...";

ufo:has-part <http://onto.fel.cvut.cz/ontologies/law/256-2013/Foundations> .

Ouery Languages and Inference

SELECT * WHERE {

}

<http://onto.fel.cvut.cz/ontologies/laws/406-2000/Building>

ufo:has-part+ ?part .

So What's the Catch?

- Efficient access to Semantic Data storage is problematic
 - No standard defined (besides doing everything through SPARQL)
 - Number of ad hoc solutions with often imprecise semantics
 - Statement-level vs. domain object-level APIs
- Many solutions prototypical with no support and scarce documentation
- Lack of success stories
- Developers not used to SW technologies and their background
- Performance?

SW vs Programming World Mismatch

- Statement-based processing
- Open-world assumption
- Expressive inference
- Dynamic nature (e.g., attach any properties to individuals)

- Object-oriented programming
- Typically closed-world
- Language-level inference only (subclasses)
- Rigid object model (compiled languages)

Object-ontological Mapping

Why?

Why?

- RDF(S) -> 90 triples
- CRUD? REST API? Maintenance?
 - Nightmare
- Object model -> 5 classes
- CRUD? REST API?
 - Plenty of support out there
- Easier to work with domain objects in an application

Object-ontological Mapping (OOM)

- Also object-triple mapping (OTM)
- Basic mapping quite simple, but many subtle issues (multiple inheritance, inference, unmapped properties...)
- Formalization still does not exist (PhD goal)

Ontology	Object
RDFS class	Entity class
RDF property	Attribute
RDFS class instance	Entity (object)

Java OWL Persistence API

Java OWL Persistence API (JOPA)

- Java persistence library for Semantic Web-based applications
- Performs object-ontological (triple) mapping
 - Triples/Axioms to objects with attributes and vice versa
- Similarity to JPA not coincidental
 - Entities
 - Persistence context
 - Transactions
 - Queries
 - Separate storage access layer
- <u>https://github.com/kbss-cvut/jopa</u>

JOPA

@MappedSuperclass

abstract class AbstractUser implements HasIdentifier, HasTypes, Serializable { 🔰 🔍

@Id

URI uri;

@ParticipationConstraints(nonEmpty = true)
@OWLDataProperty(iri = cz.cvut.kbss.termit.util.Vocabulary.s_p_ma_krestni_jmeno)
String firstName;

@ParticipationConstraints(nonEmpty = true)

@OWLDataProperty(iri = cz.cvut.kbss.termit.util.Vocabulary.s_p_ma_prijmeni)
String lastName;

@ParticipationConstraints(nonEmpty = true) @OWLDataProperty(iri = Vocabulary.s_p_ma_uzivatelske_jmeno) String username;

@Types Set<String> types;

* Persists the specified instance into the repository.
*
* @param instance The instance to persist

@Transactional

/**

*/

public void persist(@NonNull T instance) {
 Objects.requireNonNull(instance);
 prePersist(instance);
 getPrimaryDao().persist(instance);

@Override

public Optional<T> find(URI id) {
 Objects.requireNonNull(id);
 try {
 return Optional.ofNullable(em.find(type, id));
 } catch (RuntimeException e) {
 throw new PersistenceException(e);
 }
}

@Override

```
public void persist(T entity) {
    Objects.requireNonNull(entity);
    try {
        em.persist(entity);
    } catch (RuntimeException e) {
        throw new PersistenceException(e);
    }
```

Comparison of Object-triple Mapping Libraries

- Semantic Web journal
- DOI: 10.3233/SW-190345
- Designed a framework for OTM library comparison
 - **1.** Qualitative
 - 2. Benchmark
 - I. Performance
 - II. Memory
- <u>https://kbss.felk.cvut.cz/web/kbss/otm-benchmark</u>

Comparison of OTM Libraries - Qualitative

• 12 criteria

- A. General
 - Transaction support, Storage access variability, Query result mapping, Object-level query language, Detached objects, Code/ontology generator
- B. Ontology-specific
 - Explicit inference treatment, Named graphs, Automatic provenance generation
- C. Mapping
 - Inheritance mapping, Unmapped data access, RDF collections and containers
- 12 libraries evaluated
 - ActiveRDF, AliBaba, AutoRDF, Empire, JAOB, JOPA, KOMMA, RDFBeans, RDFReactor, The Semantic Framework, Spira, SuRF

Comparison of OTM Libraries - Benchmark

- Benchmark application using aviation safety reporting tool model
- Java, RDF4J API (GraphDB used as storage)
- 6 CRUD operations
 - Create, Batch create, Retrieve, Retrieve all, Update, Delete
- 6 heap sizes
- 5 libraries evaluated
 - AliBaba, Empire, KOMMA, JOPA, RDFBeans
- By-product demo application for each of the evaluated libraries

Comparison of OTM Libraries - Performance

Comparison of OTM Libraries - Results

- OTM libraries significantly differ in supported features
- More important is that the semantics of their operation are often radically different
- Heap size has only minor effect on performance
- Some libraries support only RDF/OWL file access
 - Not suitable for application deployment
- Many libraries support only RDF4JAPI
 - But most triple stores support it, so not a big deal
- Languages without static type checking represent closer match for ontologies
 - But static model allows type checking and reveals typos early

Practical Applications of Semantic Web Technologies in Domain-specific Systems

Our Projects

- Reporting Tool + SISel
 - Aviation safety
- Dataset Dashboard
 - Exploration of Linked Data datasets
- Study Manager
 - Support for clinical trials
- Termlt
 - Domain vocabulary management

Reporting Tool

- (Aviation) safety occurrence reporting, management and analysis
- For organizations reporting safety occurrences to an authority
- Built upon Aviation Safety Ontology
 - Unified Foundational Ontology (UFO)-based conceptualization of the domain
 - Consists of aviation, safety, documentation modules
- Model uses class hierarchies
- Inference for statistics done in SPARQL queries
- <u>https://github.com/kbss-cvut/reporting-tool</u>

Reporting Tool

Occurrence Categories (Top 5 in Last Year)

Event Type	Annual Count	Annual Trend
9 - GCOL: Ground Collision	2	<u> </u>
1 - AMAN: Abrupt maneuvre	2	^
8 - RAMP: Ground Handling	1	

Showing 3 of 3 items.

SISel

- Extension of Reporting Tool for the Czech Aviation Authority
- Manage, integrate and analyze reports
- Large taxonomies (ECCAIRS), diverse inputs, legislation
- Towards Data-Driven Safety: An Ontology-Based Information System
 - Journal of Aerospace Information Systems

Termlt

- Vocabulary management system
- Allows to manage terms with definitions and relationships
- Rich domain model
 - UFO-based ontology with roots in Dataset Descriptor Ontology
 - Inference class and property hierarchy, inverse properties
- Complete Semantic Web-based stack
 - Semantic repository currently GraphDB Free
 - JOPA for data access
 - REST API supporting JSON-LD
 - JB4JSON-LD, <u>https://github.com/kbss-cvut/jb4jsonld</u>

Termlt

- Vocabularies consisting of
 - Glossary basic term hierarchy based on SKOS broader/narrower relationships
 - Model detailed domain model based on glossary terms
- Vocabulary terms used to annotate resources
- Semantics-based search
 - Terms assigned to resources more precise than annotation with keywords
 - Resources related via terms
- NLP techniques used to
 - Find existing term occurrences in file content
 - Suggest new terms based on token significance in file content

TermIt Use Case – Prague Urbanism

Termlt Use Case – Semantic Government Vocabulary

- Basic Vocabulary
 - E.g. Event, Kind, Relator
 - Based on the Unified Foundational Ontology
- Vocabulary of Public Sector
 - E.g. Legal Subject, Organization
 - Mapped to ISA Core Vocabularies
- Vocabularies of Legislation
 - E.g. Building (Act 406/2000 Coll., on Energy Management)
 - One vocabulary per Act
- Vocabularies of Agenda
 - One vocabulary per Agenda
- Vocabularies of Datasets
 - One vocabulary per Data Schema (to support data series)

Conclusions

Our Experience

- Mature, easy to use and documented libraries are crucial for development
- IRIs are difficult to use in a RESTAPI
- RDF₄J has performance issues when using SPIN inference
- No matter how meticulously a domain model is designed, it never survives practical deployment in the original form
- It is possible to integrate SW libraries with popular development libraries
 - Spring, React, TypeScript

Our Tools

• JOPA

- https://github.com/kbss-cvut/jopa
- JB4JSON-LD and JB4JSON-LD Jackson
 - <u>https://github.com/kbss-cvut/jb4jsonld</u>
- SPipes
 - <u>https://kbss.felk.cvut.cz/web/kbss/s-pipes</u>
- SForms
 - https://kbss.felk.cvut.cz/web/kbss/s-forms
- Dataset Dashboard
 - https://kbss.felk.cvut.cz/web/kbss/dataset-dashboard

Thank You