Rauch J., Šimůnek M.: Apriori and GUHA – Comparing two approaches to data mining with association rules. Intelligent Data Analysis, vol. 21, no. 4, pp. 981-1013, 2017.
Vojíř S., Smutný Z.: Business Rules Mining Using GUHA Method for the Personalization of Commercial Offers. Engineering Economics, Vol 28, No 2 (2017).
Rauch J., Šimůnek M.: Dobývání znalostí z databází, LISp-Miner a GUHA. Oeconomica, 2014. 462 pages. ISBN 978-80-245-2033-9.
Fürnkranz J., Kliegr T.: A Brief Overview of Rule Learning. In: RuleML 2015: 54-69.
Rauch J., Šimůnek M.: Learning Association Rules from Data through Domain Knowledge and Automation. In: Rules on the Web (RuleML 2014). Springer LNCS, 2014, .
Šimůnek M., Rauch J.: EverMiner Prototype Using LISp-Miner Control Language. In: Foundations of Intelligent Systems (ISMIS 2014). Springer LNCS.
Šimůnek M.: LISp-Miner Control Language description of scripting language implementation. Journal of systems integration, 2014, Vol. 5, No. 2, online.
Rauch J.: Observational Calculi and Association Rules. Studies in Computational Intelligence, Vol. 469, Springer, 2013.
Kuchař J., Kliegr T.: GAIN: web service for user tracking and preference learning – a smart TV use case. In: RecSys ’13, ACM, 2013.
Chudán D., Svátek V.: Advanced Mining of Association Rules over Periodic Snapshots in a Data Warehouse. In: I-KNOW 2013, ACM, 28:1-28:4, 2013
Berka P.: Towards Comprehensive Concept Description Based on Association Rules. In: IDA’13, Springer LNCS, 2013.
Dojchinovski M., Kliegr T.: Entityclassifier.eu: Real-Time Classification of Entities in Text with Wikipedia. In: ECML-PKDD’13, Springer LNCS, 2013.
Škrabal R., Šimůnek M., Vojíř S., Hazucha A., Marek T., Chudán D., Kliegr T.: Association Rule Mining Following the Web Search Paradigm. In: ECML-PKDD’12, Springer LNCS, 2012.
Berka P.: Learning compositional decision rules using the KEX algorithm. Intelligent Data Analysis, 2012, Vol. 16, No. 4.